Publications by authors named "Leandro Donisi"

: Long-term work-related musculoskeletal disorders are predominantly influenced by factors such as the duration, intensity, and repetitive nature of load lifting. Although traditional ergonomic assessment tools can be effective, they are often challenging and complex to apply due to the absence of a streamlined, standardized framework. Recently, integrating wearable sensors with artificial intelligence has emerged as a promising approach to effectively monitor and mitigate biomechanical risks.

View Article and Find Full Text PDF

: Gait analysis, traditionally performed with lab-based optical motion capture systems, offers high accuracy but is costly and impractical for real-world use. Wearable technologies, especially inertial measurement units (IMUs), enable portable and accessible assessments outside the lab, though challenges with sensor placement, signal selection, and algorithm design can affect accuracy. This systematic review aims to bridge the benchmarking gap between IMU-based and traditional systems, validating the use of wearable inertial systems for gait analysis.

View Article and Find Full Text PDF

Machine learning (ML) is a field of artificial intelligence that uses algorithms capable of extracting knowledge directly from data that could support decisions in multiple fields of engineering [...

View Article and Find Full Text PDF

Occupational ergonomics aims to optimize the work environment and to enhance both productivity and worker well-being. Work-related exposure assessment, such as lifting loads, is a crucial aspect of this discipline, as it involves the evaluation of physical stressors and their impact on workers' health and safety, in order to prevent the development of musculoskeletal pathologies. In this study, we explore the feasibility of machine learning (ML) algorithms, fed with time- and frequency-domain features extracted from inertial signals (linear acceleration and angular velocity), to automatically and accurately discriminate safe and unsafe postures during weight lifting tasks.

View Article and Find Full Text PDF

Background: Progressive supranuclear palsy (PSP) is a rare 4R-tauopathy. Transcranial direct current stimulation (tDCS) may improve specific symptoms.

Objectives: This randomized, double-blinded, sham-controlled trial aimed at verifying the short-, mid-, and long-term effect of multiple sessions of anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC) cortex in PSP.

View Article and Find Full Text PDF

The use of wearable sensors for calculating gait parameters has become increasingly popular as an alternative to optoelectronic systems, currently recognized as the gold standard. The objective of the study was to evaluate the agreement between the wearable Opal system and the optoelectronic BTS SMART DX system for assessing spatiotemporal gait parameters. Fifteen subjects with progressive supranuclear palsy walked at their self-selected speed on a straight path, and six spatiotemporal parameters were compared between the two measurement systems.

View Article and Find Full Text PDF

Manual material handling and load lifting are activities that can cause work-related musculoskeletal disorders. For this reason, the National Institute for Occupational Safety and Health proposed an equation depending on the following parameters: intensity, duration, frequency, and geometric characteristics associated with the load lifting. In this paper, we explore the feasibility of several Machine Learning (ML) algorithms, fed with frequency-domain features extracted from electromyographic (EMG) signals of back muscles, to discriminate biomechanical risk classes defined by the Revised NIOSH Lifting Equation.

View Article and Find Full Text PDF

Mathematical models can improve the understanding of physiological systems behaviour, which is a fundamental topic in the bioengineering field. Having a reliable model enables researchers to carry out in silico experiments, which require less time and resources compared to their in vivo and in vitro counterparts. This work's objective is to capture the characteristics that a nonlinear dynamical mathematical model should exhibit, in order to describe physiological control systems at different scales.

View Article and Find Full Text PDF

Background And Objective: Mechanistic-based Model simulations (MM) are an effective approach commonly employed, for research and learning purposes, to better investigate and understand the inherent behavior of biological systems. Recent advancements in modern technologies and the large availability of omics data allowed the application of Machine Learning (ML) techniques to different research fields, including systems biology. However, the availability of information regarding the analyzed biological context, sufficient experimental data, as well as the degree of computational complexity, represent some of the issues that both MMs and ML techniques could present individually.

View Article and Find Full Text PDF

While in the literature there is much interest in investigating lower limbs gait of patients affected by neurological diseases, such as Parkinson's Disease (PD), fewer publications involving upper limbs movements are available. In previous studies, 24 motion signals (the so-called reaching tasks) of the upper limbs of PD patients and Healthy Controls (HCs) were used to extract several kinematic features through a custom-made software; conversely, the aim of our paper is to investigate the possibility to build models - using these features - for distinguishing PD patients from HCs. First, a binary logistic regression and, then, a Machine Learning (ML) analysis was performed by implementing five algorithms through the Knime Analytics Platform.

View Article and Find Full Text PDF

The recovery of independent gait represents one of the main functional goals of the rehabilitative interventions after stroke but it can be hindered by the presence of unilateral spatial neglect (USN). The aim of the paper is to study if the presence of USN in stroke patients affects lower limb gait parameters between the two body sides, differently from what could be expected by the motor impairment alone, and to explore whether USN is associated to specific gait asymmetry. Thirty-five stroke patients (right or left lesion and ischemic or hemorrhagic etiology) who regained independent gait were assessed for global cognitive functioning and USN.

View Article and Find Full Text PDF

Physical ergonomics has established itself as a valid strategy for monitoring potential disorders related, for example, to working activities. Recently, in the field of physical ergonomics, several studies have also shown potential for improvement in experimental methods of ergonomic analysis, through the combined use of artificial intelligence, and wearable sensors. In this regard, this review intends to provide a first account of the investigations carried out using these combined methods, considering the period up to 2021.

View Article and Find Full Text PDF

Lifting is one of the most potentially harmful activities for work-related musculoskeletal disorders (WMSDs), due to exposure to biomechanical risk. Risk assessment for work activities that involve lifting loads can be performed through the NIOSH (National Institute of Occupational Safety and Health) method, and specifically the Revised NIOSH Lifting Equation (RNLE). Aim of this work is to explore the feasibility of a logistic regression model fed with time and frequency domains features extracted from signals acquired through one inertial measurement unit (IMU) to classify risk classes associated with lifting activities according to the RNLE.

View Article and Find Full Text PDF

Current diagnosis of concussion relies on self-reported symptoms and medical records rather than objective biomarkers. This work uses a novel measurement setup called BioVRSea to quantify concussion status. The paradigm is based on brain and muscle signals (EEG, EMG), heart rate and center of pressure (CoP) measurements during a postural control task triggered by a moving platform and a virtual reality environment.

View Article and Find Full Text PDF

Background: Mild cognitive impairment (MCI) is frequent in Parkinson's disease (PD) and represents a risk factor for the development of dementia associated with PD (PDD). Since PDD has been associated with disability, caregiver burden, and an increase in health-related costs, early detection of MCI associated with PD (PD-MCI) and its biomarkers is crucial.

Objective: Given that gait is considered a surrogate marker for cognitive decline in PD, the aim of this study was to compare gait patterns in PD-MCI subtypes in order to verify the existence of an association between specific gait features and particular MCI subtypes.

View Article and Find Full Text PDF

Work-related musculoskeletal disorders are among the main occupational health problems. Substantial evidence has shown that work-related physical risk factors are the main source of low back complaints, particularly affecting heavy and repetitive manual lifting activities. The aim of the study is, during load lifting tasks, to explore the correlation between the time domain features extracted from the acceleration and angular velocity signals of the performing subject and the load lifted, and to explore the feasibility of a multiple linear regression model to predict the lifted load.

View Article and Find Full Text PDF

The use of e-textile technologies spread out in the scientific research with several applications in both medical and nonmedical world. In particular, wearable technologies and miniature electronics devices were implemented and tested for medical research purposes. In this paper, a systematic review regarding the use of e-textile for clinical applications was conducted: the Scopus and Pubmed databases were investigate by considering research studies from 2010 to 2020.

View Article and Find Full Text PDF

Kasai portoenterostomy (KP) represents the first-line treatment for biliary atresia (BA). The purpose was to compare the accuracy of quantitative parameters extracted from laboratory tests, US imaging, and MR imaging studies using machine learning (ML) algorithms to predict the long-term medical outcome in native liver survivor BA patients after KP. Twenty-four patients were evaluated according to clinical and laboratory data at initial evaluation (median follow-up = 9.

View Article and Find Full Text PDF

We compared the prognostic value of myocardial perfusion imaging (MPI) by conventional- (C-) single-photon emission computed tomography (SPECT) and cadmium-zinc-telluride- (CZT-) SPECT in a cohort of patients with suspected or known coronary artery disease (CAD) using machine learning (ML) algorithms. A total of 453 consecutive patients underwent stress MPI by both C-SPECT and CZT-SPECT. The outcome was a composite end point of all-cause death, cardiac death, nonfatal myocardial infarction, or coronary revascularization procedures whichever occurred first.

View Article and Find Full Text PDF

Although prostate cancer is one of the most common causes of mortality and morbidity in advancing-age males, early diagnosis improves prognosis and modifies the therapy of choice. The aim of this study was the evaluation of a combined radiomics and machine learning approach on a publicly available dataset in order to distinguish a clinically significant from a clinically non-significant prostate lesion. A total of 299 prostate lesions were included in the analysis.

View Article and Find Full Text PDF

Heart-rate variability has proved a valid tool in prognosis definition of patients with congestive heart failure (CHF). Previous research has documented Poincaré plot analysis as a valuable approach to study heart-rate variability performance among different subjects. In this paper, we explored the possibility to feed machine-learning (ML) algorithms using unconventional quantitative parameters extracted from Poincaré plots (generated from 24-h electrocardiogram recordings) to classify patients with CHF belonging to different New York Heart Association (NYHA) classes.

View Article and Find Full Text PDF

Parkinson's disease is the second most common neurodegenerative disorder in the world. Assumed that gait dysfunctions represent a major motor symptom for the pathology, gait analysis can provide clinicians quantitative information about the rehabilitation outcome of patients. In this scenario, wearable inertial systems for gait analysis can be a valid tool to assess the functional recovery of patients in an automatic and quantitative way, helping clinicians in decision making.

View Article and Find Full Text PDF

Many activities may elicit a biomechanical overload. Among these, lifting loads can cause work-related musculoskeletal disorders. Aspiring to improve risk prevention, the National Institute for Occupational Safety and Health (NIOSH) established a methodology for assessing lifting actions by means of a quantitative method based on intensity, duration, frequency and other geometrical characteristics of lifting.

View Article and Find Full Text PDF

Background: Parkinson's disease is the second most frequent neurodegenerative disorder. Its diagnosis is challenging and mainly relies on clinical aspects. At present, no biomarker is available to obtain a diagnosis of certainty in vivo.

View Article and Find Full Text PDF