Publications by authors named "Leander Schietgat"

Maximum common substructures (MCS) have received a lot of attention in the chemoinformatics community. They are typically used as a similarity measure between molecules, showing high predictive performance when used in classification tasks, while being easily explainable substructures. In the present work, we applied the Pairwise Maximum Common Subgraph Feature Generation (PMCSFG) algorithm to automatically detect toxicophores (structural alerts) and to compute fingerprints based on MCS.

View Article and Find Full Text PDF

Motivation: Population-level genetic variation enables competitiveness and niche specialization in microbial communities. Despite the difficulty in culturing many microbes from an environment, we can still study these communities by isolating and sequencing DNA directly from an environment (metagenomics). Recovering the genomic sequences of all isoforms of a given gene across all organisms in a metagenomic sample would aid evolutionary and ecological insights into microbial ecosystems with potential benefits for medicine and biotechnology.

View Article and Find Full Text PDF

Transposable elements (TEs) are repetitive nucleotide sequences that make up a large portion of eukaryotic genomes. They can move and duplicate within a genome, increasing genome size and contributing to genetic diversity within and across species. Accurate identification and classification of TEs present in a genome is an important step towards understanding their effects on genes and their role in genome evolution.

View Article and Find Full Text PDF

It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features.

View Article and Find Full Text PDF

Profile hidden Markov models (profile HMMs) are known to efficiently predict whether an amino acid (AA) sequence belongs to a specific protein family. Profile HMMs can also be used to search for protein domains in genome sequences. In this case, HMMs are typically learned from AA sequences and then used to search on the six-frame translation of nucleotide (NT) sequences.

View Article and Find Full Text PDF

Trypsin is the workhorse protease in mass spectrometry-based proteomics experiments and is used to digest proteins into more readily analyzable peptides. To identify these peptides after mass spectrometric analysis, the actual digestion has to be mimicked as faithfully as possible in silico. In this paper we introduce CP-DT (Cleavage Prediction with Decision Trees), an algorithm based on a decision tree ensemble that was learned on publicly available peptide identification data from the PRIDE repository.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: