Cassava brown streak disease (CBSD) poses a substantial threat to food security. To address this challenge, we used PlantCV to extract CBSD root necrosis image traits from 320 clones, with an aim of identifying genomic regions through genome-wide association studies (GWAS) and candidate genes. Results revealed strong correlations among certain root necrosis image traits, such as necrotic area fraction and necrotic width fraction, as well as between the convex hull area of root necrosis and the percentage of necrosis.
View Article and Find Full Text PDFCassava, a vital global food source, faces a threat from Cassava Brown Streak Disease (CBSD). CBSD results from two viruses: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). These viruses frequently pose challenges to the traditional symptom-based 1-5 phenotyping method due to its limitations in terms of accuracy and objectivity.
View Article and Find Full Text PDFThis study focuses on meeting end-users' demand for cassava (Manihot esculenta Crantz) varieties with low cyanogenic potential (hydrogen cyanide potential [HCN]) by using near-infrared spectrometry (NIRS). This technology provides a fast, accurate, and reliable way to determine sample constituents with minimal sample preparation. The study aims to evaluate the effectiveness of machine learning (ML) algorithms such as logistic regression (LR), support vector machine (SVM), and partial least squares discriminant analysis (PLS-DA) in distinguishing between low and high HCN accessions.
View Article and Find Full Text PDFIntroduction: Cassava brown streak disease (CBSD) is a major threat to food security in East and central Africa. Breeding for resistance against CBSD is the most economical and sustainable way of addressing this challenge.
Methods: This study seeks to assess the (1) performance of CBSD incidence and severity; (2) identify genomic regions associated with CBSD traits and (3) candidate genes in the regions of interest, in the Cycle 2 population of the National Crops Resources Research Institute.
Cassava, a food security crop in Africa, is grown throughout the tropics and subtropics. Although cassava can provide high productivity in suboptimal conditions, the yield in Africa is substantially lower than in other geographies. The yield gap is attributable to many challenges faced by cassava in Africa, including susceptibility to diseases and poor soil conditions.
View Article and Find Full Text PDFCassava brown streak disease (CBSD) caused by the rapidly evolving cassava brown streak viruses (CBSVs), causes immense yield losses to the cassava value chain in eastern and southern Africa. Western Africa, another region that heavily depends on cassava is under eminent threat from CBSD. Resistance breeding is the best practical solution.
View Article and Find Full Text PDF