Publications by authors named "Leah N Dimascio"

Hematopoietic stem cells (HSCs) respond to injury by rapidly proliferating and regenerating the hematopoietic system. Little is known about the intracellular programs that are activated within HSCs during this regenerative process and how this response may be influenced by alterations in signals from the injured microenvironment. Here we have examined the regenerating microenvironment and find that following injury it has an enhanced ability to support HSCs.

View Article and Find Full Text PDF

Glucose uptake and utilization are growth factor-stimulated processes that are frequently upregulated in cancer cells and that correlate with enhanced cell survival. The mechanism of metabolic protection from apoptosis, however, has been unclear. Here we identify a novel signaling pathway initiated by glucose catabolism that inhibited apoptotic death of growth factor-deprived cells.

View Article and Find Full Text PDF

A fundamental question in hematopoietic stem cell (HSC) biology is how self-renewal is controlled. Here we show that the molecular regulation of two critical elements of self-renewal, inhibition of differentiation and induction of proliferation, can be uncoupled, and we identify Notch signaling as a key factor in inhibiting differentiation. Using transgenic Notch reporter mice, we found that Notch signaling was active in HSCs in vivo and downregulated as HSCs differentiated.

View Article and Find Full Text PDF