We report a new method for the regiodivergent dearomative (3 + 2) reaction between 3-substituted indoles and oxyallyl cations. Access to both regioisomeric products is possible and is contingent on the presence or absence of a bromine atom on the substituted oxyallyl cation. In this way, we are able to prepare molecules that contain highly-hindered, stereodefined, vicinal, quaternary centers.
View Article and Find Full Text PDFWe previously described the development of a DNA-alkylating compound that showed selective toxicity in breast cancer cells. This compound contained an estrogen receptor α (ERα)-binding ligand and a DNA-binding/methylating component that could selectively methylate the N3-position of adenines at adenine-thymine rich regions of DNA. Herein, we describe mechanistic investigations that demonstrate that this class of compounds facilitate the translocation of the ERα-compound complex to the nucleus and induce the expression of ERα target genes.
View Article and Find Full Text PDFThe nucleophile-intercepted Beckmann fragmentation (NuBFr) has the potential to be broadly applicable to the synthesis of indoline alkaloid-based natural products. However, the reaction has not been widely adopted, in part, because of limitations associated with the availability of appropriate promoter- reagents. We have devised a stereospecific Ag(I)-promoted reaction for functionalizing NuBFr products to give novel compositions of matter that may be useful in synthesis and medicinal chemistry.
View Article and Find Full Text PDFWe describe the first examples of nucleophile-intercepted Beckmann fragmentations of indoline oximes. This reaction uses MsCl as a promoter to give cyano chlorides and is believed to proceed through an aziridinium intermediate a double stereoinvertive process. Mechanistic insights have led to the further discovery that oxygen, nitrogen, and bromide nucleophiles can be employed for this fragmentation by the use of other promoters.
View Article and Find Full Text PDFChem Res Toxicol
October 2019
N3-Methyl-2'-deoxyadenosine (MdA) is the major dA methylation product in duplex DNA. MdA blocks DNA replication and undergoes depurination at significantly higher rates than the native nucleotide from which it is derived. Recent reports on the effects of the nucleosome core particle (NCP) environment on the reactivity of N7-methyl-2'-deoxyguanosine (MdG) inspired this investigation concerning the reactivity of MdA in NCPs.
View Article and Find Full Text PDF