Publications by authors named "Leah Filardi"

Methoxymethanol (CH3OCH2OH) is a reactive C2 ether-alcohol that is formed by coupling events in both heterogeneous and homogeneous systems. It is found in complex reactive environments-for example those associated with catalytic reactors, combustion systems, and liquid-phase mixtures of oxygenates. Using tunable synchrotron-generated vacuum-ultraviolet photons between 10.

View Article and Find Full Text PDF

Soft-oxidant-assisted methane coupling has emerged as a promising pathway to upgrade methane from natural gas sources to high-value commodity chemicals, such as ethylene, at selectivities higher than those associated with oxidative (O) methane coupling (OCM). To date, few studies have reported investigations into the electronic structure and the microscopic physical structure of catalytic active sites present in the binary metal oxide catalyst systems that are known to be effective for this reaction. Correlating the catalyst activity to specific active site structures and electronic properties is an essential aspect of catalyst design.

View Article and Find Full Text PDF

Electrolyte cations can have significant effects on the kinetics and selectivity of electrocatalytic reactions. We show an atypical mechanism through which electrolyte cations can impact electrocatalyst performance─direct incorporation of the cation into the oxide electrocatalyst lattice. We investigate the transformations of copper electrodes in alkaline electrochemistry through operando X-ray absorption spectroscopy in KOH and Ba(OH) electrolytes.

View Article and Find Full Text PDF

Carbon dioxide-assisted coupling of methane offers an approach to chemically upgrade two greenhouse gases and components of natural gas to produce ethylene and syngas. Prior research on this reaction has concentrated efforts on catalyst discovery, which has indicated that composites comprised of both reducible and basic oxides are especially promising. There is a need for detailed characterization of these bifunctional oxide systems to provide a more fundamental understanding of the active sites and their roles in the reaction.

View Article and Find Full Text PDF

High electron affinity (EA) molecules p-type dope low ionization energy (IE) polymers, resulting in an equilibrium doping level based on the energetic driving force (IE-EA), reorganization energy, and dopant concentration. Anion exchange doping (AED) is a process whereby the dopant anion is exchanged with a stable ion from an electrolyte. We show that the AED level can be predicted using an isotherm equilibrium model.

View Article and Find Full Text PDF