Enteric neural stem cell (ENSC) therapy offers great promise for neurointestinal diseases; however, current isolation methods yield insufficient neurons for regenerative applications. Multiomic profiling of enteric glial cells (EGCs) suggests that subpopulations within myenteric ganglia (MyGa) are a reservoir of highly neurogenic ENSCs. Here, we describe protocols to enrich for intraganglionic EGCs by isolating intact fragments of MyGa, generating cultures with higher neuronal purity than traditional methodologies isolating intramuscular single cells (IM-SCs).
View Article and Find Full Text PDFBackground: Immune cell populations in the intestinal muscularis propria during colitis are poorly resolved. Maintaining homeostasis in this niche is critical, highlighted by the poorer prognosis of inflammatory bowel disease associated with muscularis propria inflammation.
Methods: This study utilizes single-cell RNA sequencing to survey the immune cell populations within the muscularis propria of normal colon and dextran sodium sulfate-induced colitis.
Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs).
View Article and Find Full Text PDFOxidative stress is increasingly recognized as a central player in a range of gastrointestinal (GI) disorders, as well as complications stemming from therapeutic interventions. This article presents an overview of the mechanisms of oxidative stress in GI conditions and highlights a link between oxidative insult and disruption to the enteric nervous system (ENS), which controls GI functions. The dysfunction of the ENS is characteristic of a spectrum of disorders, including neurointestinal diseases and conditions such as inflammatory bowel disease (IBD), diabetic gastroparesis, and chemotherapy-induced GI side effects.
View Article and Find Full Text PDFSuccessful organ transplantation provides an opportunity to extend the lives of patients with end-stage organ failure. Selectively suppressing the donor-specific alloimmune response, however, remains challenging without the continuous use of non-specific immunosuppressive medications, which have multiple adverse effects including elevated risks of infection, chronic kidney injury, cardiovascular disease, and cancer. Efforts to promote allograft tolerance have focused on manipulating the adaptive immune response, but long-term allograft survival rates remain disappointing.
View Article and Find Full Text PDFOxidative stress is involved in many gastrointestinal (GI) disorders as either the primary pathogenesis (radiation, chemotherapy, toxicity, ischemia-reperfusion) or a secondary driving force of disease progression (inflammation and diabetes). The GI tract is innervated intrinsically by the enteric nervous system (ENS) with a diverse role in maintaining gut homeostasis and GI motility. Complications in the physiological functioning of the ENS results in GI dysfunction that can result in debilitating sequelae from dysmotility greatly impacting quality of life and leading to potentially fatal complications.
View Article and Find Full Text PDFNeurons and glia of the peripheral nervous system are derived from progenitor cell populations, originating from embryonic neural crest. The neural crest and vasculature are intimately associated during embryonic development and in the mature central nervous system, in which they form a neurovascular unit comprised of neurons, glia, pericytes, and vascular endothelial cells that play important roles in health and disease. Our group and others have previously reported that postnatal populations of stem cells originating from glia or Schwann cells possess neural stem cell qualities, including rapid proliferation and differentiation into mature glia and neurons.
View Article and Find Full Text PDF