Publications by authors named "Leah C Dorman"

Traumatic brain injury (TBI) is a leading cause of mortality and disability worldwide and can lead to secondary sequelae such as increased seizure susceptibility. Emerging work suggests that the thalamus, the relay center of the brain that undergoes secondary damage after cortical TBI, is involved with heightened seizure risks after TBI. TBI also induces the recruitment of peripheral immune cells, including T cells, to the site(s) of injury, but it is unclear how these cells impact neurological sequelae post-TBI.

View Article and Find Full Text PDF

The innate immune system shapes brain development and is implicated in neurodevelopmental diseases. It is critical to define the relevant immune cells and signals and their impact on brain circuits. In this work, we found that group 2 innate lymphoid cells (ILC2s) and their cytokine interleukin-13 (IL-13) signaled directly to inhibitory interneurons to increase inhibitory synapse density in the developing mouse brain.

View Article and Find Full Text PDF

The Endoplasmic Reticulum (ER)-resident HSP70 chaperone BiP (HSPA5) plays a crucial role in maintaining and restoring protein folding homeostasis in the ER. BiP's function is often dysregulated in cancer and virus-infected cells, conferring pro-oncogenic and pro-viral advantages. We explored BiP's functions during infection by the Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic gamma-herpesvirus associated with cancers of immunocompromised patients.

View Article and Find Full Text PDF
Article Synopsis
  • * The study identifies a specific microglial state that responds to type I interferon (IFN-I) and actively engulfs neurons during the early postnatal development of the somatosensory cortex.
  • * Alterations in IFN-I signaling impact microglial function, leading to neuronal damage and increased excitatory neurons, which may contribute to heightened sensitivity to touch, highlighting the importance of microglia in brain development and homeostasis.
View Article and Find Full Text PDF

Ulcerative colitis (UC) is driven by immune and stromal subsets, culminating in epithelial injury. Vedolizumab (VDZ) is an anti-integrin antibody that is effective for treating UC. VDZ is known to inhibit lymphocyte trafficking to the intestine, but its broader effects on other cell subsets are less defined.

View Article and Find Full Text PDF

The innate immune system plays essential roles in brain synaptic development, and immune dysregulation is implicated in neurodevelopmental diseases. Here we show that a subset of innate lymphocytes (group 2 innate lymphoid cells, ILC2s) is required for cortical inhibitory synapse maturation and adult social behavior. ILC2s expanded in the developing meninges and produced a surge of their canonical cytokine Interleukin-13 (IL-13) between postnatal days 5-15.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is driven by immune and stromal subsets, culminating in epithelial injury. Vedolizumab (VDZ) is an anti-integrin antibody that is effective for treating UC. VDZ is known to inhibit lymphocyte trafficking to the intestine, but its broader effects on other cell subsets are less defined.

View Article and Find Full Text PDF

Microglia are critical regulators of brain development that engulf synaptic proteins during postnatal synapse remodeling. However, the mechanisms through which microglia sense the brain environment are not well defined. Here, we characterized the regulatory program downstream of interleukin-33 (IL-33), a cytokine that promotes microglial synapse remodeling.

View Article and Find Full Text PDF
Article Synopsis
  • - Microglia, the brain's resident immune cells, play a crucial role in engulfing neurons during brain development, especially influenced by a distinct subset responsive to Type I interferon (IFN-I).
  • - This specific microglial response was significantly increased after sensory deprivation in young mice, indicating their involvement in neural circuit remodeling.
  • - Disrupting IFN-I signaling led to dysfunctional microglia and increased neuron stress, demonstrating IFN-I's essential role in maintaining proper neuronal health and development in the brain.
View Article and Find Full Text PDF

Microglia are brain resident macrophages that play vital roles in central nervous system (CNS) development, homeostasis, and pathology. Microglia both remodel synapses and engulf apoptotic cell corpses during development, but whether unique molecular programs regulate these distinct phagocytic functions is unknown. Here we identify a molecularly distinct microglial subset in the synapse rich regions of the zebrafish (Danio rerio) brain.

View Article and Find Full Text PDF
Article Synopsis
  • - Undergraduate students at UCLA conducted research using RNA interference (RNAi) and fluorescent proteins to pinpoint genes crucial for blood cell development in fruit flies, screening around 3,500 genes and finding 137 that affected hematopoiesis.
  • - By targeting RNAi to different cell types involved in blood cell maturation, the researchers identified specific gene subsets that either facilitate or inhibit this process, revealing new insights into gene functions related to RNA processing and vesicular trafficking.
  • - The CURE (Course-Based Undergraduate Research Experience) model not only enhanced students' understanding and skills in science but also improved retention rates in STEM fields, demonstrating the value of hands-on research in education.
View Article and Find Full Text PDF

Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity.

View Article and Find Full Text PDF

Microglia actively shape the developing brain, but their transcriptional diversity is not well understood. Complementary studies by Hammond et al. (2018) and Li et al.

View Article and Find Full Text PDF

Neuronal synapse formation and remodeling are essential to central nervous system (CNS) development and are dysfunctional in neurodevelopmental diseases. Innate immune signals regulate tissue remodeling in the periphery, but how this affects CNS synapses is largely unknown. Here, we show that the interleukin-1 family cytokine interleukin-33 (IL-33) is produced by developing astrocytes and is developmentally required for normal synapse numbers and neural circuit function in the spinal cord and thalamus.

View Article and Find Full Text PDF