Introduction: Assessing the use of a radiation therapy (RT) planning MRI performed in the treatment position (pMRI) on target volume delineation and effect on organ at risk dose for oropharyngeal cancer patients planned with diagnostic MRI (dMRI) and CT scan.
Methods: Diagnostic MRI scans were acquired for 26 patients in a neutral patient position using a 3T scanner (dMRI). Subsequent pMRI scans were acquired on the same scanner with a flat couch top and the patient in their immobilisation mask.
This project investigates the feasibility of implementation of MRI-only prostate planning in a prospective multi-center study. A two-phase implementation model was utilized where centers performed retrospective analysis of MRI-only plans for five patients followed by prospective MRI-only planning for subsequent patients. Feasibility was assessed if at least 23/25 patients recruited to phase 2 received MRI-only treatment workflow.
View Article and Find Full Text PDFIn MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer.
View Article and Find Full Text PDFPurpose: To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning.
Patients And Methods: A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.
To clinically implement MRI simulation or MRI-alone treatment planning requires comprehensive end-to-end testing to ensure an accurate process. The purpose of this study was to design and build a geometric phantom simulating a human male pelvis that is suitable for both CT and MRI scanning and use it to test geometric and dosimetric aspects of MRI simulation including treatment planning and digitally reconstructed radiograph (DRR) generation.A liquid filled pelvic shaped phantom with simulated pelvic organs was scanned in a 3T MRI simulator with dedicated radiotherapy couch-top, laser bridge and pelvic coil mounts.
View Article and Find Full Text PDFJ Contemp Brachytherapy
March 2014
Purpose: The superior image quality of 3 tesla (3T) magnetic resonance (MR) imaging in cervical cancer offers the potential to use a single image set for brachytherapy. This study aimed to determine a suitable single sequence for contouring tumour and organs at risk, applicator reconstruction, and treatment planning.
Material And Methods: A 3T (Skyra, Siemens Healthcare AG, Germany) MR imaging system with an 18 channel body matrix coil generated HDR cervical cancer brachytherapy planning images on 20 cases using plastic-based treatment applicators.
Two experiments investigated modulatory effects of a surround upon the perceived speed of a moving central region. Both the surround's depth and velocity (relative to the center) were manipulated. The abilities of younger observers (mean age was 23.
View Article and Find Full Text PDFPurpose Of Review: This review will discuss a potentially more effective treatment for retinopathy of prematurity (ROP) with fewer acute and long-term complications. Avastin (bevacizumab) therapy is a promising anti-vascular endothelial growth factor (anti-VEGF) administered directly into the vitreous.
Recent Findings: Recent reports detail the use of Avastin alone, and in combination with light amplification by stimulated emission of radiation (LASER) therapy and vitrectomy, for ROP stages 3, 4, and 5.