Publications by authors named "Lea Vacca Michel"

Sepsis, a leading cause of death in hospitals, can be defined as a dysregulated host inflammatory response to infection, which can lead to tissue damage, organ failure and cardiovascular complications. Although there is no cure for sepsis, the condition is typically managed with broad-spectrum antibiotics to eliminate any potential bacterial source of infection. However, a potential side effect of antibiotic treatment is the enhanced release of bacterial extracellular vesicles (BEVs), membrane-bound nanoparticles containing proteins and other biological molecules from their parent bacterium.

View Article and Find Full Text PDF

Sepsis, a leading cause of death in hospitals, can be defined as a dysregulated host inflammatory response to infection, which can lead to tissue damage, organ failure, and cardiovascular complications. Although there is no cure for sepsis, the condition is typically managed with broad spectrum antibiotics to eliminate any potential bacterial source of infection. However, a potential side-effect of antibiotic treatment is the enhanced release of bacterial extracellular vesicles (BEVs).

View Article and Find Full Text PDF

Sepsis is an often life-threatening response to infection, occurring when host proinflammatory immune responses become abnormally elevated and dysregulated. To diagnose sepsis, the patient must have a confirmed or predicted infection, as well as other symptoms associated with the pathophysiology of sepsis. However, a recent study found that a specific causal organism could not be determined in the majority (70.

View Article and Find Full Text PDF

In addition to lipopolysaccharides (LPS), outer membrane proteins - Lpp, OmpA and peptidoglycan-associated lipoprotein (Pal) - are part of the outer membrane of Escherichia coli and are proposed to contribute to bacterial sepsis-related inflammation. This study showed that ampicillin (a β-lactam antibiotic) enhances Pal's release from Escherichia coli to a greater extent than gentamicin and levofloxacin (aminoglycoside and quinolone antibiotics, respectively). It is proposed that the majority of Pal is released in outer membrane vesicles (OMVs), which also contain LPS and other outer membrane and periplasmic proteins.

View Article and Find Full Text PDF

Purpose: Nontypeable Haemophilus influenzae (NTHi) is a commensal in the human nasopharynx and the cause of pneumonia, meningitis, sinusitis, acute exacerbations of chronic obstructive pulmonary disease and acute otitis media (AOM). AOM is the most common ailment for which antibiotics are prescribed in the United States. With the emergence of new strains of antibiotic-resistant bacteria, finding an effective and broad coverage vaccine to protect against AOM-causing pathogens has become a priority.

View Article and Find Full Text PDF

Nontypeable (NTHi) are Gram-negative pathogens that contribute to a variety of diseases, including acute otitis media and chronic obstructive pulmonary disease. As NTHi have an absolute requirement for heme during aerobic growth, these bacteria have to scavenge heme from their human hosts. These heme sources can range from free heme to heme bound to proteins, such as hemoglobin.

View Article and Find Full Text PDF

Peptidoglycan associated lipoprotein (Pal) of Escherichia coli (E. coli) is a characteristic bacterial lipoprotein, with an N-terminal lipid moiety anchoring it to the outer membrane. Since its discovery over three decades ago, Pal has been well studied for its participation in the Tol-Pal complex which spans the periplasm and has been proposed to play important roles in bacterial survival, pathogenesis and virulence.

View Article and Find Full Text PDF

The majority of outer membrane (OM) lipoproteins in Gram-negative bacteria are tethered to the membrane via an attached lipid moiety and oriented facing in toward the periplasmic space; a few lipoproteins have been shown to be surface exposed. The outer membrane lipoprotein P6 from the Gram-negative pathogenic bacterium nontypeable Haemophilus influenzae (NTHi) is surface exposed and a leading vaccine candidate for prevention of NTHi infections. However, we recently found that P6 is not a transmembrane protein as previously thought (L.

View Article and Find Full Text PDF

As biochemists, one of our most captivating teaching tools is the use of molecular visualization. It is a compelling medium that can be used to communicate structural information much more effectively with interactive animations than with static figures. We have conducted a survey to begin a systematic evaluation of the current classroom usage of molecular visualization.

View Article and Find Full Text PDF

An outer membrane protein of nontypeable Haemophilus influenzae (NTHi), P6, is a vaccine candidate because it has been characterized as conserved among all H. influenzae strains. Among 151 isolates from children, age 6 to 30 months, evaluating NTHi nasopharyngeal (NP) and oropharyngeal (OP) colonization and tympanocentesis confirmed acute otitis media we identified 14 strains (9.

View Article and Find Full Text PDF

P6 has been a vaccine candidate for nontypable Haemophilus influenzae (NTHi) based on its location on the outer membrane and immunogenicity. Because P6 is attached to the inner peptidoglycan layer of NTHi, and is putatively surface exposed, it must be a transmembrane protein. We examined the P6 structure using computational modeling, site-directed mutagenesis, and nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF