To determine if a variant identified by diagnostic genetic testing is causal for disease, applied genetics professionals evaluate all available evidence to assign a clinical classification. Experimental assay data can provide strong functional evidence for or against pathogenicity in variant classification, but appears to be underutilised. We surveyed genetic diagnostic professionals in Australasia to assess their application of functional evidence in clinical practice.
View Article and Find Full Text PDFBackground: Multiplexed Assays of Variant Effects (MAVEs) can test all possible single variants in a gene of interest. The resulting saturation-style functional data may help resolve variant classification disparities between populations, especially for Variants of Uncertain Significance (VUS).
Methods: We analyzed clinical significance classifications in 213,663 individuals of European-like genetic ancestry versus 206,975 individuals of non-European-like genetic ancestry from All of Us and the Genome Aggregation Database.
Congregate homeless shelters are disproportionately affected by infectious disease outbreaks. We describe enterovirus epidemiology across 23 adult and family shelters in King County, Washington, USA, during October 2019-May 2021, by using repeated cross-sectional respiratory illness and environmental surveillance and viral genome sequencing. Among 3,281 participants >3 months of age, we identified coxsackievirus A21 (CVA21) in 39 adult residents (3.
View Article and Find Full Text PDFCRISPR-based gene activation (CRISPRa) is a strategy for upregulating gene expression by targeting promoters or enhancers in a tissue/cell-type specific manner. Here, we describe an experimental framework that combines highly multiplexed perturbations with single-cell RNA sequencing (sc-RNA-seq) to identify cell-type-specific, CRISPRa-responsive cis-regulatory elements and the gene(s) they regulate. Random combinations of many gRNAs are introduced to each of many cells, which are then profiled and partitioned into test and control groups to test for effect(s) of CRISPRa perturbations of both enhancers and promoters on the expression of neighboring genes.
View Article and Find Full Text PDFGastrulation is the highly coordinated process by which the early embryo breaks symmetry, establishes germ layers and a body plan, and sets the stage for organogenesis. As early mammalian development is challenging to study stem cell-derived models have emerged as powerful surrogates, human and mouse gastruloids. However, although single cell RNA-seq (scRNA-seq) and high-resolution imaging have been extensively applied to characterize such embryo models, a paucity of measurements of protein dynamics and regulation leaves a major gap in our understanding.
View Article and Find Full Text PDFBackground: A variant can be pathogenic or benign with relation to a human disease. Current classification categories from benign to pathogenic reflect a probabilistic summary of the current understanding. A primary metric of clinical utility for multiplexed assays of variant effect (MAVE) is the number of variants that can be reclassified from uncertain significance (VUS).
View Article and Find Full Text PDFSex differences and age-related changes in the human heart at the tissue, cell, and molecular level have been well-documented and many may be relevant for cardiovascular disease. However, how molecular programs within individual cell types vary across individuals by age and sex remains poorly characterized. To better understand this variation, we performed single-nucleus combinatorial indexing (sci) ATAC- and RNA-Seq in human heart samples from nine donors.
View Article and Find Full Text PDFIn silico variant effect predictions are available for nearly all missense variants but played a minimal role in clinical variant classification because they were deemed to provide only supporting evidence. Recently, the ClinGen Sequence Variant Interpretation (SVI) Working Group updated recommendations for variant effect prediction use. By analyzing control pathogenic and benign variants across all genes, they were able to compute evidence strength for predictor score intervals with some intervals generating moderate, strong, or even very strong evidence.
View Article and Find Full Text PDFPathogen genomics can provide insights into underlying infectious disease transmission patterns, but new methods are needed to handle modern large-scale pathogen genome datasets and realize this full potential. In particular, genetically proximal viruses should be highly informative about transmission events as genetic proximity indicates epidemiological linkage. Here, we leverage pairs of identical sequences to characterise fine-scale transmission patterns using 114,298 SARS-CoV-2 genomes collected through Washington State (USA) genomic sentinel surveillance with associated age and residence location information between March 2021 and December 2022.
View Article and Find Full Text PDFMany studies have used mobile device location data to model SARS-CoV-2 dynamics, yet relationships between mobility behavior and endemic respiratory pathogens are less understood. We studied the effects of population mobility on the transmission of 17 endemic viruses and SARS-CoV-2 in Seattle over a 4-year period, 2018-2022. Before 2020, visits to schools and daycares, within-city mixing, and visitor inflow preceded or coincided with seasonal outbreaks of endemic viruses.
View Article and Find Full Text PDFComputational methods for assessing the likely impacts of mutations, known as variant effect predictors (VEPs), are widely used in the assessment and interpretation of human genetic variation, as well as in other applications like protein engineering. Many different VEPs have been released to date, and there is tremendous variability in their underlying algorithms and outputs, and in the ways in which the methodologies and predictions are shared. This leads to considerable challenges for end users in knowing which VEPs to use and how to use them.
View Article and Find Full Text PDFBackground: Multiplexed Assays of Variant Effects (MAVEs) can test all possible single variants in a gene of interest. The resulting saturation-style data may help resolve variant classification disparities between populations, especially for variants of uncertain significance (VUS).
Methods: We analyzed clinical significance classifications in 213,663 individuals of European-like genetic ancestry versus 206,975 individuals of non-European-like genetic ancestry from and the Genome Aggregation Database.
SARS-CoV-2 transmission is largely driven by heterogeneous dynamics at a local scale, leaving local health departments to design interventions with limited information. We analyzed SARS-CoV-2 genomes sampled between February 2020 and March 2022 jointly with epidemiological and cell phone mobility data to investigate fine scale spatiotemporal SARS-CoV-2 transmission dynamics in King County, Washington, a diverse, metropolitan US county. We applied an approximate structured coalescent approach to model transmission within and between North King County and South King County alongside the rate of outside introductions into the county.
View Article and Find Full Text PDFBackground: Early during the COVID-19 pandemic, it was important to better understand transmission dynamics of SARS-CoV-2, the virus that causes COVID-19. Household contacts of infected individuals are particularly at risk for infection, but delays in contact tracing, delays in testing contacts, and isolation and quarantine posed challenges to accurately capturing secondary household cases.
Methods: In this study, 346 households in the Seattle region were provided with respiratory specimen collection kits and remotely monitored using web-based surveys for respiratory illness symptoms weekly between October 1, 2020, and June 20, 2021.
Clinical classification of genomic variants identified on sequencing is often challenging, with many variants classified as Variants of Uncertain Significance (VUS) on account of insufficient evidence. Advances in sequencing and gene synthesis has made feasible multiplexed assays of variant effect (MAVEs), which quantify the functional impact of many thousands of genomic variants in a single experiment. These assays and the functional evidence they generate have the potential to empower more accurate clinical variant classification.
View Article and Find Full Text PDFBackground: Pathogenic autosomal-dominant missense variants in (), which encodes the sarcomeric protein (β-MHC [beta myosin heavy chain]) expressed in cardiac and skeletal myocytes, are a leading cause of hypertrophic cardiomyopathy and are clinically actionable. However, ≈75% of missense variants are of unknown significance. While human-induced pluripotent stem cells (hiPSCs) can be differentiated into cardiomyocytes to enable the interrogation of variant effect in a disease-relevant context, deep mutational scanning has not been executed using diploid hiPSC derivates due to low hiPSC gene-editing efficiency.
View Article and Find Full Text PDFVaccine effectiveness (VE) studies utilizing the test-negative design are typically conducted in clinical settings, rather than community populations, leading to bias in VE estimates against mild disease and limited information on VE in healthy young adults. In a community-based university population, we utilized data from a large SARS-CoV-2 testing program to estimate relative VE of COVID-19 mRNA vaccine primary series and monovalent booster dose versus primary series only against symptomatic SARS-CoV-2 infection from September 2021 to July 2022. We used the test-negative design and logistic regression implemented via generalized estimating equations adjusted for age, calendar time, prior SARS-CoV-2 infection, and testing frequency (proxy for test-seeking behavior) to estimate relative VE.
View Article and Find Full Text PDFDelineating functionally normal variants from functionally abnormal variants in tumor suppressor proteins is critical for cancer surveillance, prognosis, and treatment options. BRCA1 is a protein that has many variants of uncertain significance which are not yet classified as functionally normal or abnormal. In vitro functional assays can be used to identify the functional impact of a variant when the variant has not yet been categorized through clinical observation.
View Article and Find Full Text PDF