Publications by authors named "Lea Padgett"

A peptide comprising the juxtamembrane C-terminal intracellular loop 4 (IL4) of the CB cannabinoid receptor possesses three Serine residues (Ser402, Ser411 and Ser415). Here we report the effect of Ser phosphorylation on the CB IL4 peptide conformation and cellular signaling functions using nuclear magnetic resonance spectroscopy, circular dichroism, G protein activation and cAMP production. Circular dichroism studies indicated that phosphorylation at various Ser residues induced helical structure in different environments.

View Article and Find Full Text PDF

Recently developed X-ray crystal structures of active state G-protein-coupled receptors have opened the way for detailed examination of the movement of the transmembrane (TM) helices and the specific residues involved in the receptor activation upon ligand binding. Previous modeling studies have indicated that the brain cannabinoid (CB1) receptor binds with a ligand at least in part through a hydrophobic tail on the ligand. This interaction is believed to be similar to the rotameric toggle switch proposed for the β2 adrenergic receptor (β2AR).

View Article and Find Full Text PDF

The Friedel-Crafts acylation of N-p-toluenesulfonylpyrrole under Friedel-Crafts conditions has been reinvestigated. Evidence is presented in support of the hypothesis that when AlCl(3) is used as the Lewis acid, acylation proceeds via reaction of an organoaluminum intermediate with the acyl halide. This leads to the production of the 3-acyl derivative as the major product.

View Article and Find Full Text PDF

Background: CB1 cannabinoid receptors are G-protein coupled receptors for endocannabinoids including anandamide and 2-arachidonoylglycerol. Because these arachidonic acid metabolites possess a 20-carbon polyene chain as the alkyl terminal moiety, they are highly flexible with the potential to adopt multiple biologically relevant conformations, particularly those in a bent form. To better understand the molecular interactions associated with binding and steric trigger mechanisms of receptor activation, a series of conformationally-restricted anandamide analogs having a wide range of affinity and efficacy were evaluated.

View Article and Find Full Text PDF

Two series of 1-alkyl-2-aryl-4-(1-naphthoyl)pyrroles were synthesized and their affinities for the cannabinoid CB(1) and CB(2) receptors were determined. In the 2-phenyl series (5) the N-alkyl group was varied from n-propyl to n-heptyl. A second series of 23 1-pentyl-2-aryl-4-(1-naphthoyl)-pyrroles (6) was also prepared.

View Article and Find Full Text PDF

Over the past 40 years, much research has been carried out directed toward the characterization of the cannabinergic system. With the identification of two G-protein coupled receptors and the endogenous ligand, anandamide, pharmacological targets have expanded to encompass hydrolase and transport proteins as well as novel classes of cannabinoid ligands. Those ligands that demonstrate high affinity for the receptors and good biological efficacy are tied together through lipophilic regions repeatedly demonstrated necessary for activity.

View Article and Find Full Text PDF