Background: In cluster randomized trials (CRTs) or stepped wedge cluster randomized trials (SWCRTs) of malaria interventions, mosquito movement leads to contamination between trial arms unless buffer zones separate the clusters. Contamination can be accounted for in the analysis, yielding an estimate of the contamination range, the distance over which contamination measurably biases the effectiveness.
Methods: A previously described analysis for CRTs is extended to SWCRTs and estimates of effectiveness are provided as a function of intervention coverage.
Background: In cluster randomized trials (CRTs) of interventions against malaria, mosquito movement between households ultimately leads to contamination between intervention and control arms, unless they are separated by wide buffer zones.
Methods: This paper proposes a method for adjusting estimates of intervention effectiveness for contamination and for estimating a contamination range between intervention arms, the distance over which contamination measurably biases the estimate of effectiveness. A sigmoid function is fitted to malaria prevalence or incidence data as a function of the distance of households to the intervention boundary, stratified by intervention status and including a random effect for the clustering.
In addition to the direct effect of insecticide-treated nets (ITNs), there has been evidence for spatial indirect effects. Spatial analyses in cluster randomized trials (CRTs) are rare, but a large-scale CRT from 1993 was one of the first to conduct a spatial analysis of ITNs in CRTs. We revisit these data by applying a broader range of contemporary spatial methods to further explore spatial spillover.
View Article and Find Full Text PDFWe use partial differential equations to describe the dynamics of an Aedes aegypti mosquito population on an island, and the effects of a sterile male release. The model includes mosquito movement and an Allee effect to capture extinction events. We apply optimal control theory to identify the release strategy that eliminates the mosquitoes most rapidly, conditional on a limited availability of sterile males.
View Article and Find Full Text PDF