The in vitro expansion and differentiation of human hematopoietic progenitors into megakaryocytes capable of elongating proplatelets and releasing platelets allows an in-depth study of the mechanisms underlying platelet biogenesis. Available culture protocols are mostly based on hematopoietic progenitors derived from bone marrow or cord blood raising a number of ethical, technical, and economic concerns. If there are already available protocols for obtaining CD34 cells from peripheral blood, this manuscript proposes a straightforward and optimized protocol for obtaining CD34+ cells from leukodepletion filters readily available in blood centers.
View Article and Find Full Text PDFResearch on mitochondrial metabolism and respiration are rapidly developing areas, however, efficient and widely accepted methods for studying these in solid tumors are still missing. Here, we developed a new method without isotope tracing to quantitate time dependent mitochondrial citrate efflux in cell lines and human breast cancer samples. In addition, we studied ADP-activated respiration in both of the sample types using selective permeabilization and showed that metabolic activity and respiration are not equally linked.
View Article and Find Full Text PDFDuring platelet biogenesis, microtubules (MTs) are arranged into submembranous structures (the marginal band) that encircle the cell in a single plane. This unique MT array has no equivalent in any other mammalian cell, and the mechanisms responsible for this particular mode of assembly are not fully understood. One possibility is that platelet MTs are composed of a particular set of tubulin isotypes that carry specific posttranslational modifications.
View Article and Find Full Text PDFGene profiling studies have indicated that differentiated human megakaryocytes express the receptor for IL-21 (IL-21R), an immunostimulatory cytokine associated with inflammatory disorders and currently under evaluation in cancer therapy. The aim of this study was to investigate whether IL-21 modulates megakaryopoiesis. We first checked the expression of IL-21 receptor on human bone marrow and differentiated megakaryocytes.
View Article and Find Full Text PDFThe mechanisms regulating megakaryopoiesis and platelet production (thrombopoiesis) are still incompletely understood. Identification of a progenitor with enhanced thrombopoietic capacity would be useful to decipher these mechanisms and to improve our capacity to produce platelets in vitro. Differentiation of peripheral blood CD34(+) cells in the presence of bone marrow-human mesenchymal stromal cells (MSCs) enhanced the production of proplatelet-bearing megakaryocytes (MKs) and platelet-like elements.
View Article and Find Full Text PDF