Publications by authors named "Lea Harrington"

Article Synopsis
  • Telomere length (TL) is thought to indicate the physiological costs of reproduction, infection, and immune responses, but its relationships with these factors in natural populations are underexplored.
  • A study on free-living Soay sheep found that higher helminth parasite burdens were associated with longer leucocyte TL, challenging the idea that short TL indicates high infection costs.
  • The research revealed no significant link between TL and immune response markers, suggesting TL does not effectively represent the costs of infection or immunity in wild animals.
View Article and Find Full Text PDF

The inaugural Canadian Conferences on Translational Geroscience were held as 2 complementary sessions in October and November 2023. The conferences explored the profound interplay between the biology of aging, social determinants of health, the potential societal impact of geroscience, and the maintenance of health in aging individuals. Although topics such as cellular senescence, molecular and genetic determinants of aging, and prevention of chronic disease were addressed, the conferences went on to emphasize practical applications for enhancing older people's quality of life.

View Article and Find Full Text PDF

Telomere Biology Disorders (TBDs) are a group of rare diseases characterized by the presence of short and/or dysfunctional telomeres. They comprise a group of bone marrow failure syndromes, idiopathic pulmonary fibrosis, and liver disease, among other diseases. Genetic alterations (variants) in the genes responsible for telomere homeostasis have been linked to TBDs.

View Article and Find Full Text PDF

Short telomeres induce a DNA damage response (DDR) that evokes apoptosis and senescence in human cells. An extant question is the contribution of telomere dysfunction-induced DDR to the phenotypes observed in aging and telomere biology disorders. One candidate is RAP1, a telomere-associated protein that also controls transcription at extratelomeric regions.

View Article and Find Full Text PDF

Telomere maintenance is essential for maintaining genome integrity in both normal and cancer cells. Without functional telomeres, chromosomes lose their protective structure and undergo fusion and breakage events that drive further genome instability, including cell arrest or death. One means by which this loss can be overcome in stem cells and cancer cells is via re-addition of G-rich telomeric repeats by the telomerase reverse transcriptase (TERT).

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of pRB phosphorylation in development and homeostasis using Rb and Rb knock-in mice with disrupted phosphorylation sites, revealing normal early development despite suppressed phosphorylation.
  • - While Rb mice show minimal aging signs with telomere shortening, Rb mice experience more severe aging effects, including growth issues and diabetes, due to disrupted pancreatic cell function and increased DNA damage response.
  • - Treatment with vitamin C as an epigenetic regulator shows potential to improve pancreatic cell re-entry into the cell cycle, reduce DNA damage, and alleviate diabetes symptoms, highlighting its importance in regulation and longevity.
View Article and Find Full Text PDF

MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and neoplastic cells by CD8 T cells. However, accurately predicting the MAP repertoire remains difficult, because only a fraction of the transcriptome generates MAPs. In this study, we investigated whether codon arrangement (usage and placement) regulates MAP biogenesis.

View Article and Find Full Text PDF

Telomere length (TL), typically measured across a sample of blood cells, has emerged as an exciting potential marker of physiological state and of the costs of investment in growth and reproduction within evolutionary ecology. While there is mounting evidence from studies of wild vertebrates that short TL predicts raised subsequent mortality risk, the relationship between reproductive investment and TL is less clear cut, and previous studies report both negative and positive associations. In this study, we examined the relationship between TL and different aspects of maternal reproductive performance in a free-living population of Soay sheep.

View Article and Find Full Text PDF

There has been an increasing interest in natural products with the ability to inhibit telomerase activity in tumour and cancerous cells. Green tea catechins have been reported previously to inhibit telomerase, but it was unknown whether catechins from other plant sources could exhibit this property. We isolated 2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol (catechin without the presence of a galloyl unit) from the stem bark of , and tested its ability to inhibit recombinant, partially purified telomerase produced in rabbit reticulocyte lysates.

View Article and Find Full Text PDF

Telomere length (TL) is considered an important biomarker of whole-organism health and aging. Across humans and other vertebrates, short telomeres are associated with increased subsequent mortality risk, but the processes responsible for this correlation remain uncertain. A key unanswered question is whether TL-mortality associations arise due to positive effects of genes or early-life environment on both an individual's average lifetime TL and their longevity, or due to more immediate effects of environmental stressors on within-individual TL loss and increased mortality risk.

View Article and Find Full Text PDF

Telomere erosion in cells with insufficient levels of the telomerase reverse transcriptase (TERT), contributes to age-associated tissue dysfunction and senescence, and p53 plays a crucial role in this response. We undertook a genome-wide CRISPR screen to identify gene deletions that sensitized p53-positive human cells to telomerase inhibition. We uncovered a previously unannotated gene, C16ORF72, which we term Telomere Attrition and p53 Response 1 (TAPR1), that exhibited a synthetic-sick relationship with TERT loss.

View Article and Find Full Text PDF

Short telomeres are a principal defining feature of telomere biology disorders, such as dyskeratosis congenita (DC), for which there are no effective treatments. Here, we report that primary fibroblasts from DC patients and late generation telomerase knockout mice display lower nicotinamide adenine dinucleotide (NAD) levels, and an imbalance in the NAD metabolome that includes elevated CD38 NADase and reduced poly(ADP-ribose) polymerase and SIRT1 activities, respectively, affecting many associated biological pathways. Supplementation with the NAD precursor, nicotinamide riboside, and CD38 inhibition improved NAD homeostasis, thereby alleviating telomere damage, defective mitochondrial biosynthesis and clearance, cell growth retardation, and cellular senescence of DC fibroblasts.

View Article and Find Full Text PDF

Resveratrol is a natural product associated with wide-ranging effects in animal and cellular models, including lifespan extension. To identify the genetic target of resveratrol in human cells, we conducted genome-wide CRISPR-Cas9 screens to pinpoint genes that confer sensitivity or resistance to resveratrol. An extensive network of DNA damage response and replicative stress genes exhibited genetic interactions with resveratrol and its analog pterostilbene.

View Article and Find Full Text PDF

The precise relationship between epigenetic alterations and telomere dysfunction is still an extant question. Previously, we showed that eroded telomeres lead to differentiation instability in murine embryonic stem cells (mESCs) via DNA hypomethylation at pluripotency-factor promoters. Here, we uncovered that telomerase reverse transcriptase null () mESCs exhibit genome-wide alterations in chromatin accessibility and gene expression during differentiation.

View Article and Find Full Text PDF

During gestation, sex hormones cause a significant thymic involution which enhances fertility. This thymic involution is rapidly corrected following parturition. As thymic epithelial cells (TECs) are responsible for the regulation of thymopoiesis, we analyzed the sequential phenotypic and transcriptomic changes in TECs during the postpartum period in order to identify mechanisms triggering postpartum thymic regeneration.

View Article and Find Full Text PDF

Petite Integration Factor 1 (PIF1) is a multifunctional helicase present in nuclei and mitochondria. PIF1 knock out (KO) mice exhibit accelerated weight gain and decreased wheel running on a normal chow diet. In the current study, we investigated whether Pif1 ablation alters whole body metabolism in response to weight gain.

View Article and Find Full Text PDF

The integrity of chromosome ends, or telomeres, depends on myriad processes that must balance the need to compact and protect the telomeric, G-rich DNA from detection as a double-stranded DNA break, and yet still permit access to enzymes that process, replicate and maintain a sufficient reserve of telomeric DNA. When unable to maintain this equilibrium, erosion of telomeres leads to perturbations at or near the telomeres themselves, including loss of binding by the telomere protective complex, shelterin, and alterations in transcription and post-translational modifications of histones. Although the catastrophic consequences of full telomere de-protection are well described, recent evidence points to other, less obvious perturbations that arise when telomere length equilibrium is altered.

View Article and Find Full Text PDF

Extensive mammographic density is a strong risk factor for breast cancer, but may also be an indicator of biological age. In this study we examined whether mammographic density is related to blood telomere length, a potential marker of susceptibility to age-related disease. We measured mammographic density by a computer assisted method and blood telomere length using a validated PCR method.

View Article and Find Full Text PDF

Glioblastomas (GBM) grow in a rich neurochemical milieu, but the impact of neurochemicals on GBM growth is largely unexplored. We interrogated 680 neurochemical compounds in patient-derived GBM neural stem cells (GNS) to determine the effects on proliferation and survival. Compounds that modulate dopaminergic, serotonergic, and cholinergic signaling pathways selectively affected GNS growth.

View Article and Find Full Text PDF

Novel pyrazolopyrimidines displaying high potency and selectivity toward SRC family kinases have been developed by combining ligand-based design and phenotypic screening in an iterative manner. Compounds were derived from the promiscuous kinase inhibitor PP1 to search for analogs that could potentially target a broad spectrum of kinases involved in cancer. Phenotypic screening against MCF7 mammary adenocarcinoma cells generated target-agnostic structure-activity relationships that biased subsequent designs toward breast cancer treatment rather than to a particular target.

View Article and Find Full Text PDF

Mutations in genes coding for mitochondrial helicases such as TWINKLE and DNA2 are involved in mitochondrial myopathies with mtDNA instability in both human and mouse. We show that inactivation of Pif1, a third member of the mitochondrial helicase family, causes a similar phenotype in mouse. pif1-/- animals develop a mitochondrial myopathy with respiratory chain deficiency.

View Article and Find Full Text PDF

Fluorescence microscopy can be used to assess the dynamic localization and intensity of single entities in vitro or in living cells. It has been applied with aplomb to many different cellular processes and has significantly enlightened our understanding of the heterogeneity and complexity of biological systems. Recently, high-resolution fluorescence microscopy has been brought to bear on telomeres, leading to new insights into telomere spatial organization and accessibility, and into the mechanistic nuances of telomere elongation.

View Article and Find Full Text PDF

Telomeres play a fundamental role in the maintenance of genomic integrity at a cellular level, and average leukocyte telomere length (LTL) has been proposed as a biomarker of organismal aging. However, studies tracking LTL across the entire life course of individuals are lacking. Here, we examined lifelong patterns of variation in LTL among four birth cohorts of female Soay sheep (Ovis aries) that were longitudinally monitored and sampled from birth to death.

View Article and Find Full Text PDF