Publications by authors named "Lea Entzmann"

While the visual world is rich and complex, importantly, it nevertheless contains many statistical regularities. For example, environmental feature distributions tend to remain relatively stable from one moment to the next. Recent findings have shown how observers can learn surprising details of environmental color distributions, even when the colors belong to actively ignored stimuli such as distractors in visual search.

View Article and Find Full Text PDF

Models of emotion processing suggest that threat-related stimuli such as fearful faces can be detected based on the rapid extraction of low spatial frequencies. However, this remains debated as other models argue that the decoding of facial expressions occurs with a more flexible use of spatial frequencies. The purpose of this study was to clarify the role of spatial frequencies and differences in luminance contrast between spatial frequencies, on the detection of facial emotions.

View Article and Find Full Text PDF

Previous studies have shown that the human visual system can detect a face and elicit a saccadic eye movement toward it very efficiently compared to other categories of visual stimuli. In the first experiment, we tested the influence of facial expressions on fast face detection using a saccadic choice task. Face-vehicle pairs were simultaneously presented and participants were asked to saccade toward the target (the face or the vehicle).

View Article and Find Full Text PDF

Previous studies have shown that face stimuli elicit extremely fast and involuntary saccadic responses toward them, relative to other categories of visual stimuli. In the present study, we further investigated to what extent face stimuli influence the programming and execution of saccades examining their amplitude. We performed two experiments using a saccadic choice task: two images (one with a face, one with a vehicle) were simultaneously displayed in the left and right visual fields of participants who had to initiate a saccade toward the image (Experiment 1) or toward a cross in the image (Experiment 2) containing a target stimulus (a face or a vehicle).

View Article and Find Full Text PDF