Publications by authors named "Lea Desigaux"

Most of DNA synthetic complexes result from the self-assembly of DNA molecules with cationic lipids or polymers in an aqueous controlled medium. However, injection of such self-assembled complexes in medium like blood that differ from that of their formulation leads to strong instability. Therefore, DNA vectors that have physico-chemical properties and structural organisation that will not be sensitive to a completely different medium in terms of ionic and protein composition are actively sought.

View Article and Find Full Text PDF

We hypothesized that a nonviral gene delivery of the hyperpolarization-activated HCN2 channel combined with the beta(2)-adrenergic receptor (ADRB2) would generate a functional pacemaker in a mouse model of complete atrioventricular block (CAVB) induced by radiofrequency ablation of the His bundle. Plasmids encoding HCN2 and ADRB2 mixed with tetronic 304, a poloxamine block copolymer, were injected in the left ventricular free wall (HCN2-ADRB2 mice). Sham mice received a noncoding plasmid.

View Article and Find Full Text PDF

RNA interference requires efficient delivery of small double-stranded RNA molecules into the target cells and their subsequent incorporation into RNA-induced silencing complexes. Although current cationic lipids commonly used for DNA transfection have also been used for siRNA transfection, a clear need still exists for better siRNA delivery to improve the gene silencing efficiency. We synthesized a series of cationic lipids characterized by head groups bearing various aminoglycosides for specific interaction with RNA.

View Article and Find Full Text PDF

The purpose of this study was to control the fabrication of new labile supramolecular assemblies by formulating associations of DNA molecules with inorganic layered double hydroxides (LDHs). The results show that LDH/DNA hybrids synthesized by a coprecipitation route involving the in situ formation of LDHs around DNA molecules acting as templates were characterized by a lamellar organization, with DNA molecules sandwiched between hydroxide layers, exhibiting a regular spacing of 1.96 nm.

View Article and Find Full Text PDF

We reported that amphiphilic block copolymers hold promise as nonviral vectors for the delivery of plasmid DNA, ranging from 4.7 to 6.2 kb, to healthy muscle for the production of local or secreted proteins.

View Article and Find Full Text PDF

Various pulmonary disorders, including cystic fibrosis, are potentially amenable to a treatment modality in which a therapeutic gene is directly delivered to the lung. Current gene delivery systems, either viral or nonviral, need further improvement in terms of efficiency and safety. We reported that nonionic amphiphilic block copolymers hold promise as nonviral gene delivery systems for transfection of muscular tissues.

View Article and Find Full Text PDF

Over the past decade, numerous nonviral cationic vectors have been synthesized. They share a high density of positive charges and efficiency for gene transfer in vitro. However, their positively charged surface causes instability in body fluids and cytotoxicity, thereby limiting their efficacy in vivo.

View Article and Find Full Text PDF

Background: We have previously shown that intramuscular injection of plasmid DNA formulated with a non-ionic amphiphile synthetic vector [poly(ethylene oxide)(13)-poly(propylene oxide)(30)-poly(ethylene oxide)(13) block copolymer; PE6400] increases reporter gene expression compared with naked DNA. We have now investigated this simple non-viral formulation for production of secreted proteins from the mouse skeletal muscle.

Methods: Plasmids encoding either constitutive human secreted alkaline phosphatase or murine erythropoietin inducible via a Tet-on system were formulated with PE6400 and intramuscularly injected into the mouse tibial anterior muscle.

View Article and Find Full Text PDF