Publications by authors named "Lea Bleier"

To understand the role of reactive oxygen species (ROS) in oxidative stress and redox signaling it is necessary to link their site of generation to the oxidative modification of specific targets. Here we have studied the selective modification of protein thiols by mitochondrial ROS that have been implicated as deleterious agents in a number of degenerative diseases and in the process of biological aging, but also as important players in cellular signal transduction. We hypothesized that this bipartite role might be based on different generator sites for "signaling" and "damaging" ROS and a directed release into different mitochondrial compartments.

View Article and Find Full Text PDF

Summary: We introduce nova, a software for the analysis of complexome profiling data. nova supports the investigation of the composition of complexes, cluster analysis of the experimental data, visual inspection and comparison of experiments and many other features.

Availability And Implementation: nova is licensed under the Artistic License 2.

View Article and Find Full Text PDF

Blue native electrophoresis (BNE) is a long established method for the analysis of native protein complexes. Applications of BNE range from investigating subunit composition, stoichiometry, and assembly of single protein complexes to profiling of whole complexomes. BNE is an indispensible tool to diagnostically analyze cells and tissues from patients with mitochondrial disorders or model organisms.

View Article and Find Full Text PDF

Apart from complex I (NADH:ubiquinone oxidoreductase) the mitochondrial cytochrome bc1 complex (complex III; ubiquinol:cytochrome c oxidoreductase) has been identified as the main producer of superoxide and derived reactive oxygen species (ROS) within the mitochondrial respiratory chain. Mitochondrial ROS are generally linked to oxidative stress, aging and other pathophysiological settings like in neurodegenerative diseases. However, ROS produced at the ubiquinol oxidation center (center P, Qo site) of complex III seem to have additional physiological functions as signaling molecules during cellular processes like the adaptation to hypoxia.

View Article and Find Full Text PDF

Macromolecular complexes are essential players in numerous biological processes. They are often large, dynamic, and rather labile; approaches to study them are scarce. Covering masses up to ∼30 MDa, we separated the native complexome of rat heart mitochondria by blue-native and large-pore blue-native gel electrophoresis to analyze its constituents by mass spectrometry.

View Article and Find Full Text PDF

In this study, we have analyzed the effect of different cardioprotective complex II inhibitors on the mitochondrial production of reactive oxygen species (ROS) because ROS seem to be essential for signaling during preconditioning to prevent ischemia/reperfusion injury. Despite different binding sites and concentrations required for half-maximal inhibition-ranging from nanomolar for the Q site inhibitor atpenin A5 to millimolar for the succinate analog malonate-all inhibitors modulated ROS production in the same ambivalent fashion: they promoted the generation of superoxide at the Q(o) site of complex III under conditions of "oxidant-induced reduction" but attenuated ROS generated at complex I due to reverse electron transfer. All inhibitors showed these ambivalent effects independent of the presence of K(+).

View Article and Find Full Text PDF

Here we study ATP synthase from human rho0 (rho zero) cells by clear native electrophoresis (CNE or CN-PAGE) and show that ATP synthase is almost fully assembled in spite of the absence of subunits a and A6L. This identifies subunits a and A6L as two of the last subunits to complete the ATP synthase assembly. Minor amounts of dimeric and even tetrameric forms of the large assembly intermediate were preserved under the conditions of CNE, suggesting that it associated further into higher order structures in the mitochondrial membrane.

View Article and Find Full Text PDF