Publications by authors named "LeOnidas C A Melo"

Phosphorus (P) plays an essential role for plant growth, but conventional P sources used in agriculture are finite and non-renewable. As a result, there is a growing need to explore alternative P sources such as sewage sludge (SS) - a P-rich solid waste and valuable renewable resource that is often mismanaged globally. Pyrolysis is a promising technique for managing SS.

View Article and Find Full Text PDF

Rudimentary methods are used to exploit gold (Au) in several artisanal mines in the Amazon, producing hazardous wastes that may pose risks of contamination by rare earth elements (REEs). The objectives of this study were to quantify the concentrations of REEs and assess their environmental and human health risks in artisanal Au mining areas in the northeastern Amazon. Thus, 25 samples of soils and mining wastes were collected in underground, colluvial, and cyanidation exploration sites, as well as in a natural forest that was considered as a reference area.

View Article and Find Full Text PDF

Pyrolysis of calcium-rich feedstock (e.g., poultry manure) generates semi-crystalline and crystalline phosphorus (P) species, compromising its short-term availability to plants.

View Article and Find Full Text PDF

Artisanal gold (Au) mining may have increased the concentrations of rare earth elements (REEs) in the Serra Pelada mine (southeastern Amazon, Brazil), which has not been evaluated so far. The objectives of this study were to determine the concentrations of cerium (Ce), lanthanum (La), scandium (Sc), and yttrium (Y) in the surroundings of the Serra Pelada mine, as well as the environmental risks associated with these elements. Therefore, 27 samples were collected in agricultural, forest, mining, and urban areas, and submitted to chemical and particle size characterization.

View Article and Find Full Text PDF

Phosphorus (P) recovery from wastewater through biochar is an alternative to build a sustainable circular economy and save non-renewable P reservoirs. The efficiency of cations in removing P from wastewater under different pyrolysis conditions is still lacking. We aimed at studying P adsorption and release from biochar enriched with Al and Mg, prepared under air-limited and N-flow pyrolysis conditions.

View Article and Find Full Text PDF

This study aimed to reuse different agro-industrial by-products (poultry litter, pig manure, sewage sludge and coffee husk) for biochar production and to evaluate their Cr(VI) removal capacities in aqueous medium. The biochars showed different morphologies with porous structures. The percentages of Cr(VI) removal from solution were higher in acid medium (pH = 2), reaching values up to 87%.

View Article and Find Full Text PDF

Determination of cation exchange capacity (CEC) in biochar by applying traditional wet methods is laborious, time-consuming, and generates chemical wastes. In this study, models were developed based on partial least square regression (PLSR) to predict CECs of biochars produced from a wide variety of feedstocks using Fourier transform infrared spectroscopy (FTIR). PLSR models used to predict CEC of biochars on weight (CEC-W) and carbon (CEC-C) basis were obtained from twenty-four biochars derived from several origins of feedstock, as well as compositions and mixtures, including four reference biochar samples.

View Article and Find Full Text PDF

Developing alternative green solutions for local and correct recycling of eggshells waste (ES) are needed by the egg-processing industries. In this study, we proposed transforming ES into a novel low-cost chemical compound named hydroxyl-eggshell (ES-OH) and investigated its capacity for arsenic (As) removal from aqueous solutions. Laboratory experiments were conducted to investigate the effects of ES-OH doses, pH, kinetics, and isotherms on As removal efficiency.

View Article and Find Full Text PDF

Incorporation of phosphorus (P) into an organic matrix may be an effective strategy to increase plant P use efficiency in high P-fixing soils. The objective of this work was to evaluate the effect of biochar-based fertilizers (BBFs), produced from poultry litter (PLB) and coffee husk (CHB) enriched with phosphoric acid and magnesium oxide, in combination with triple superphosphate (TSP) on plant growth and soil P transformations. Treatments were prepared as: TSP, CHB, PLB, CHB + TSP [1:1], CHB + TSP [3:1], PLB + TSP [1:1] and PLB + TSP [3:1]; with numbers in brackets representing the proportion of BBF and TSP on a weight basis.

View Article and Find Full Text PDF

Activated biochars were prepared from residues of medium density fiberboard (MDF) produced by the furniture industry. Biomass residue was pre-treated with FeCl3 in two different FeCl3:biomass ratios (0.5:1 and 1:1, w/w) aiming to produce a matrix embedded with iron oxide.

View Article and Find Full Text PDF

Organomineral phosphate fertilizers (OMP) may reduce phosphate release rate and its direct contact to the soil solid phase, increasing the effectiveness of phosphorus (P) fertilization. This study aimed to evaluate the effect of granulating biochar (BC) with triple superphosphate (TSP) in two forms (blend or coated) and three proportions (5, 15 and 25%, w/w) on the P release kinetics and plant growth. A successive plant trial using two soils of contrasting P buffering capacities and five P doses (0, 20, 40, 80 and 120 mg kg) was set to investigate the agronomic effectiveness of OMP that presented the slowest P release kinetic.

View Article and Find Full Text PDF

Water-soluble phosphate fertilizers release phosphorus (P) to soils promptly, causing P fixation and low plant availability in highly weathered tropical soils. Therefore, the development of strategies to improve P use efficiency is needed. We hypothesized that biochar-based fertilizers (BBFs) can provide available P to plants and improve P use efficiency when compared with soluble fertilizers.

View Article and Find Full Text PDF

Excess heavy metal concentrations in mining areas is a worldwide problem due to their toxicity and persistence. Applying amendments to those areas is a cost-effective remediation technique that would aid revegetation efforts. The aim of this work was to study the ability of sewage sludge-derived biochar (SSB), wood charcoal powder (hereafter named wood biochar - WB), raw sewage sludge (SS), and their blending (WB/SS) to improve soil properties and to immobilize Cd, Pb, and Zn after their addition to heavy-metal contaminated soils from a Zn-mining area.

View Article and Find Full Text PDF

The production of fertilizers with industrial wastes reduces the environmental impacts of waste disposal and improves environmental sustainability by generating added-value products. Our objective with this study was to evaluate the agronomic performance and potential soil/plant contamination with heavy metals of alternative phosphate (P) fertilizers, obtained from the acidulation of phosphate rocks (PR) by a metallurgical acidic waste. Seven P fertilizers were evaluated: three PR (Araxá, Patos, and Bayóvar), their respective acidulated products (PAPR), and triple superphosphate fertilizer (TSP).

View Article and Find Full Text PDF

Zinc is an important micronutrient to plant growth, but when present in large quantities it can become a toxic element to plants. This study was aimed to evaluate the growth, concentration, accumulation and availability of Zn to forage grasses (Megathyrsus maximus cvs. Aruana and Tanzania, Urochloa brizantha cvs.

View Article and Find Full Text PDF

Biochar production and use are part of the modern agenda to recycle wastes, and to retain nutrients, pollutants, and heavy metals in the soil and to offset some greenhouse gas emissions. Biochars from wood (eucalyptus sawdust, pine bark), sugarcane bagasse, and substances rich in nutrients (coffee husk, chicken manure) produced at 350, 450 and 750°C were characterized to identify agronomic and environmental benefits, which may enhance soil quality. Biochars derived from wood and sugarcane have greater potential for improving C storage in tropical soils due to a higher aromatic character, high C concentration, low H/C ratio, and FTIR spectra features as compared to nutrient-rich biochars.

View Article and Find Full Text PDF

Contamination of soil, water and plants caused by gold mining is of great societal concern because of the risk of environmental pollution and risk to human health. The aim of the present study was to evaluate the risk to human health from ingestion of As, Ba, Co, Cu, Cd, Cr, Ni, Pb, Se and Ni present in soil, sterile and mineralized waste, and water and plants at a gold mine in Serra Pelada, Pará, Brazil. Samples of soil, sterile and mineralized waste, water and plants were collected around an artisanal gold mine located in Serra Pelada.

View Article and Find Full Text PDF

Empirical models describe soil-plant transfers to explain the variations in the occurrence of potentially toxic elements (PTE) in soils and to estimate the Bioconcentration Factor (BCF). In this study, results were selected based on data in the literature on soils of humid tropical and temperate regions to evaluate soil-plant transfer models, to calculate the BCF and to derive risk concentrations of Cu, Cr, Pb, Ni and Zn present in the exposure pathway leading to the consumption of contaminated vegetables. The Cetesb (Environmental Agency of the State of Sao Paulo, Brazil) mathematical model was used to derive the risk posed by soil concentrations in urban and rural exposure scenarios.

View Article and Find Full Text PDF

Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production.

View Article and Find Full Text PDF

Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n = 191) were assessed for total Cd contents and for other metals using the USEPA 3051A method.

View Article and Find Full Text PDF