Glioblastoma multiform (GBM) is a highly aggressive primary brain tumor. Exosomes derived from glioma cells under a hypoxic microenvironment play an important role in tumor biology including metastasis, angiogenesis and chemoresistance. However, the underlying mechanisms remain to be elucidated.
View Article and Find Full Text PDFThe proliferation of pulmonary artery smooth muscle cells (PASMCs) is an important cause of pulmonary vascular remodelling in hypoxia-induced pulmonary hypertension (HPH). However, its underlying mechanism has not been well elucidated. Connexin 43 (Cx43) plays crucial roles in vascular smooth muscle cell proliferation in various cardiovascular diseases.
View Article and Find Full Text PDFGlioblastoma is the most common and aggressive brain tumor and it is characterized by a high mortality rate. Temozolomide (TMZ) is an effective chemotherapy drug for glioblastoma, but the resistance to TMZ has come to represent a major clinical problem, and its underlying mechanism has yet to be elucidated. In the present study, the role of exosomal connexin 43 (Cx43) in the resistance of glioma cells to TMZ and cell migration was investigated.
View Article and Find Full Text PDFPurpose: Angiopoietin-1 (Ang1) is a critical factor for vascular stabilization and endothelial survival via inhibition of endothelial permeability and leukocyte- endothelium interactions. Hence, we hypothesized that treatment with umbilical cord mesenchymal stem cells (UCMSCs) carrying the Ang1 gene (UCMSCs-Ang1) might be a potential approach for acute lung injury (ALI) induced by lipopolysaccharide (LPS).
Materials And Methods: UCMSCs with or without transfection with the human Ang1 gene were delivered intravenously into rats one hour after intra-abdominal instillation of LPS to induce ALI.
Autophagy has been shown to be involved in the pathophysiology of developmental seizure-induced brain damage. The present study aimed to examine whether E-64d, an autophagy inhibitor, was able to facilitate developmental seizure-induced hippocampal mossy fiber sprouting, in particular sprouting-associated zinc transporter signals. Recurrent seizures were induced by penicillin every other day in Sprague-Dawley rats from postnatal day 21 (P21).
View Article and Find Full Text PDFE-64d (a calpain and autophagy inhibitor) has previously been shown safe for the treatment of Alzheimer's disease in humans. In the present study, the potential protective mechanism of E-64d on hippocampal aberrant mossy fiber sprouting was examined in a developmental rat model of penicillin-induced recurrent epilepticus. A seizure was induced by penicillin every other day in Sprague-Dawley rats from postnatal day 21 (P21).
View Article and Find Full Text PDFCathepsins are families of proteases that have been reported to play the key roles in neuroexcitotoxicity. The present study was sought to determine the effect of CBI, a cathepsin B inhibitor, in the prevention of neurobehavioral deficits after inhalant flurothyl-induced recurrent neonatal seizures in rats. We examined the expression pattern of autophagy-related genes at acute phase after the last seizures using western blot method, and evaluated behavioral deficits during postnatal day 28 (P28) to P35.
View Article and Find Full Text PDFBackground: Autophagy is a homeostatic process for intracellular recycling of bulk proteins and aging organelles. Increased autophagy has now been reported in experimental models of traumatic brain injury, stroke and excitotoxicity, and in patients with Alzheimer's disease and critical illness. The role of autophagy in developmental epilepsy, however, is unknown.
View Article and Find Full Text PDFObjective: To apply the single cell nested multiplex polymerase chain reaction (PCR) to HLA typing, and analyze the influence factors on the amplification results.
Methods: Single cell DNA templates were prepared with different methods. The exon 2, 3 and intron 2 of HLA-A, B, and exon 2 of DRBI were amplified using multiplex PCR.
Zhongguo Shi Yan Xue Ye Xue Za Zhi
October 2006
This study was aimed to analyze the biological characteristics of rabbit bone marrow mesenchymal stem cells (rBM-MSCs) and their response to different growth factors. Rabbit BM-MSCs were separated from bone marrow mononuclear cells by using adherent cultivation. Biological characteristics were investigated by optical and electron microscopy.
View Article and Find Full Text PDF