J Phys Condens Matter
November 2024
The present study explores the energy storage properties of BaZrTi1-xOthrough phase-field modeling, focusing on the impact of composition and temperature on energy storage performance. The obtained results reveal a variety of polarization phases and configurations based on Zr compositions and temperatures. A detailed phase diagram for temperature-composition of BaZrTi1-xOis established, closely aligning with experimental measurements.
View Article and Find Full Text PDFDiscovery of non-trivial topological structures in condensed matters holds promise in novel technological paradigms. In contrast to ferromagnetics, where a variety of topological structures such as vortex, meron, and skyrmion have been discovered, only few topological structures can exist in ferroelectrics due to the lack of non-collinear interaction like the Dzyaloshinskii-Moriya interaction in ferromagnetics. Here, we demonstrate that polarization structures with a wide range of topological numbers (winding numberfrom -3 to +1) can be mechanically excited and designed by the mode-I singular stress field formed near the crack-tip in incipient ferroelectric SrTiO.
View Article and Find Full Text PDFWith the recent significant advances in micro- and nanoscale fabrication techniques, deposition of diamond-like carbon films on stainless steel substrates has been experimentally achieved. However, the underlying mechanism for the formation of film microstructures has remained elusive. In this study, the growth processes of diamond-like carbon films on AISI 316L substrate are studied via the molecular dynamics method.
View Article and Find Full Text PDFOwing to a finite and single-atom-thick two-dimensional structure, graphene nanostructures such as nanoribbons possess outstanding physical properties and unique size-dependent characteristics due to nanoscale defects, especially for mechanical properties. Graphene nanostructures characteristically exhibit strong nonlinearity in deformation and the defect brings about an extremely localized singular stress field of only a few nanometers, which might lead to unique fracture properties. Fundamental understanding of their fracture properties and criteria is, however, seriously underdeveloped and limited to the level of continuum mechanics and linear elasticity.
View Article and Find Full Text PDFThe control of topological defects in ferroelectrics, in particular by a homogeneous electric field, has emerged as an active research direction. A polarization vortex, which is a fundamental topological defect formed in ferroelectric nanodots, has recently been demonstrated to be switchable by a homogeneous electric field through the control of the built-in electrical distribution using low-symmetry nanodots. Such electrotoroidic switching is investigated for nearly ideal systems, e.
View Article and Find Full Text PDFFerroelectric materials exhibit novel topological polarization configurations due to geometric confinements originating from the material shapes and interfaces at the nanoscale. In this study, we demonstrate that those nontrivial topological ferroelectric nanostructures can be tailored in paraelectric nanoporous materials by mechanical loads using phase-field modeling. That is, in nanoporous strontium titanate, periodically-arrayed ferroelectric nanostructures in the shape of networks are formed due to strain concentrations by mechanical loads, and topological polarization configurations, such as hierarchical vortices, woven fabrics and nested structures of spiral like Hopf fibration, are stabilized in the structures strongly affected by the pore arrangements.
View Article and Find Full Text PDFA dislocation induces ferroelectricity around it in incipient ferroelectric SrTiO3 due to some reasons such as electro-mechanical coupling and it being a one-dimensional ferroelectric nanostructure. Furthermore, this microstructure is arrayed periodically in the material and dislocation structures such as a dislocation wall are formed. Due to these facts, periodically-arrayed ferroelectric nanostructures, which show various intriguing polarization configurations and functionalities depending on the internal periodic structure, may be fabricated by dislocations.
View Article and Find Full Text PDFCompositionally graded ferroelectrics (cgFEs), which possess a spatial variation in material composition, exhibit anomalous or even unprecedented properties. Despite several breakthroughs having been achieved in experiments, there surprisingly is a lack of an effective simulation approach for cgFEs, thereby greatly hindering a deep understanding about underlying mechanisms hidden behind the observed phenomena. In this study, an improved phase field model is proposed for a cgFE made of PbZrTi O based on the Ginzburg-Landau theory.
View Article and Find Full Text PDFTopological field structures, such as skyrmions, merons, and vortices, are important features found in ordered systems with spontaneously broken symmetry. A plethora of topological field structures have been discovered in magnetic and ordered soft matter systems due to the presence of inherent chiral interactions, and this has provided a fruitful platform for unearthing additional groundbreaking functionalities. However, despite being one of the most important classes of ordered systems, ferroelectrics scarcely form topological polarization structures due to their lack of intrinsic chiral interactions.
View Article and Find Full Text PDFTopological objects of nontrivial spin or dipolar field textures, such as skyrmions, merons, and vortices, interacting with applied external fields in ferroic materials are of great scientific interest as an intriguing playground of unique physical phenomena and novel technological paradigms. The quest for new topological configurations of such swirling field textures has primarily been done for magnets with Dzyaloshinskii-Moriya interactions, while the absence of such intrinsic chiral interactions among electric dipoles left ferroelectrics aside in this quest. Here, we demonstrate that a helical polarization coiled into another helix, namely a polar superhelix, can be extrinsically stabilized in ferroelectric nanosprings.
View Article and Find Full Text PDFTailoring materials to obtain unique, or significantly enhanced material properties through rationally designed structures rather than chemical constituents is principle of metamaterial concept, which leads to the realization of remarkable optical and mechanical properties. Inspired by the recent progress in electromagnetic and mechanical metamaterials, here we introduce the concept of ferroelectric nano-metamaterials, and demonstrate through an experiment in silico with hierarchical nanostructures of ferroelectrics using sophisticated real-space phase-field techniques. This new concept enables variety of unusual and complex yet controllable domain patterns to be achieved, where the coexistence between hierarchical ferroelectric and ferrotoroidic polarizations establishes a new benchmark for exploration of complexity in spontaneous polarization ordering.
View Article and Find Full Text PDF