Publications by authors named "Le Thi Phan"

Article Synopsis
  • N6-methyladenosine (m6A) is an important epigenetic modification in eukaryotic cells that influences gene expression and RNA metabolism, making it vital to identify its modification sites for understanding biological functions.
  • Recent advancements in high-throughput sequencing have generated rich datasets characterizing m6A modifications, but existing methods are often tailored to specific cell lines, restricting their broader applicability.
  • To overcome this limitation, the new MST-m6A approach uses a multi-scale transformer architecture and advanced computational techniques to accurately identify m6A sites across different cell types and tissues, demonstrating significant improvements over previous models.
View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor, and the presence of glioma stem cells (GSCs) has been linked to its resistance to treatments and recurrence. Additionally, aberrant glycosylation has been implicated in the aggressiveness of cancers. However, the influence and underlying mechanism of N-glycosylation on the GSC phenotype and GBM malignancy remain elusive.

View Article and Find Full Text PDF

Asparagine peptide lyase (APL) is among the seven groups of proteases, also known as proteolytic enzymes, which are classified according to their catalytic residue. APLs are synthesized as precursors or propeptides that undergo self-cleavage through autoproteolytic reaction. At present, APLs are grouped into 10 families belonging to six different clans of proteases.

View Article and Find Full Text PDF

Dihydrouridine (DHU, D) is one of the most abundant post-transcriptional uridine modifications found in tRNA, mRNA, and snoRNA, closely associated with disease pathogenesis and various biological processes in eukaryotes. Identifying D sites is important for understanding the modification mechanisms and/or epigenetic regulation. However, biological experiments for detecting D sites are time-consuming and expensive.

View Article and Find Full Text PDF

The worldwide appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated significant concern and posed a considerable challenge to global health. Phosphorylation is a common post-translational modification that affects many vital cellular functions and is closely associated with SARS-CoV-2 infection. Precise identification of phosphorylation sites could provide more in-depth insight into the processes underlying SARS-CoV-2 infection and help alleviate the continuing COVID-19 crisis.

View Article and Find Full Text PDF

Enhancers are non-coding DNA elements that play a crucial role in enhancing the transcription rate of a specific gene in the genome. Experiments for identifying enhancers can be restricted by their conditions and involve complicated, time-consuming, laborious, and costly steps. To overcome these challenges, computational platforms have been developed to complement experimental methods that enable high-throughput identification of enhancers.

View Article and Find Full Text PDF

Tomato yellow leaf curl virus (TYLCV) dispersed across different countries, specifically to subtropical regions, associated with more severe symptoms. Since TYLCV was first isolated in 1931, it has been a menace to tomato industrial production worldwide over the past century. Three groups were newly isolated from TYLCV-resistant tomatoes in 2022; however, their functions are unknown.

View Article and Find Full Text PDF

Anticancer peptides are emerging anticancer drug that offers fewer side effects and is more effective than chemotherapy and targeted therapy. Predicting anticancer peptides from sequence information is one of the most challenging tasks in immunoinformatics. In the past ten years, machine learning-based approaches have been proposed for identifying ACP activity from peptide sequences.

View Article and Find Full Text PDF