Publications by authors named "Le Thai Duy"

In this study, the impact of lead (Pb) doping on the photoelectrochemical (PEC) water splitting performance of tungsten oxide (WO) photoanodes was investigated through a combination of experimental and theoretical approaches. Pb-doped WO nanostructured thin films were synthesized hydrothermally, and extensive characterizations were conducted to study their morphologies, band edge, optical and photoelectrochemical properties. Pb-doped WO exhibited efficient carrier density and charge separations by reducing the charge transfer resistance.

View Article and Find Full Text PDF

These days, photodetectors are a crucial part of optoelectronic devices, ranging from environmental monitoring to international communication systems. Therefore, fabricating these devices at a low cost but obtaining high sensitivity in a wide range of wavelengths is of great interest. This report introduces a simple solution-processed hybrid 2D structure of CuO and rGO for broadband photodetector applications.

View Article and Find Full Text PDF
Article Synopsis
  • Optoelectronic devices, like photodetectors, are used in things like medical equipment and communication systems.
  • This study talks about a new, cheap photodetector made from copper oxide (CuO) nanoparticles and zinc oxide (ZnO) nanorods that works well with different colors of light.
  • The device has great performance under a specific light wavelength, showing high responsiveness and sensitivity, which makes it useful for future technology!
View Article and Find Full Text PDF

Photodetectors are essential elements for various applications like fiber optic communication systems, biomedical imaging, and so on. Thus, improving the performance and reducing the material costs of photodetectors would act as a motivation toward the future advancement of those applications. This study introduces the development of a nanohybrid of zinc oxide nanorods (ZnONRs) and multi-shaped silver nanoparticles MAgNPs through a simple solution process; in which ZnONRs are hybridized with MAgNPs to enable visible absorption through the surface plasmon resonance (SPR) effect.

View Article and Find Full Text PDF

Exploring efficient catalysts for alkaline seawater electrolysis is highly desired yet challenging. Herein, coupling single-atom rhodium with amorphous nickel hydroxide nanoparticles on copper nanowire arrays is designed as a new active catalyst for the highly efficient alkaline seawater electrolysis. We found that an amorphous Ni(OH) nanoparticle is an effective catalyst to accelerate the water dissociation step.

View Article and Find Full Text PDF

Here, we report the highly active and selective electrocatalytic reduction of NO ions to value-added NH over a single-atom Ru-modified Cu nanowire array on three-dimensional copper foam (Ru-Cu NW/CF) under ambient conditions. The obtained Ru-Cu NW/CF catalyst exhibited a maximum faradaic efficiency of 94.1% and an NH yield up to 211.

View Article and Find Full Text PDF

Developing new transparent conducting materials, especially those having flexibility, is of great interest for electronic applications. Here, our study on using the ozone-assisted atomic layer deposition (ALD) technique at a low temperature of 200 °C for making an ultrathin, transparent, flexible, and highly electroconducting nanohybrid of indium and aluminum oxides is introduced. Through various characterizations, measurements, and density functional theory-based calculations, excellent electrical conductivity (∼950 S cm), transparency (95% in the visible region), and flexibility (bendable angle of 130° for 10 000 cycles) of our nanohybrid oxide thin film with a total layer thickness below 15 nm (2-4 nm for alumina and 10 nm for indium oxide) have been revealed and discussed.

View Article and Find Full Text PDF

Metal oxide nanostructures are the most promising materials for the fabrication of advanced gas sensors. However, the main challenge of these gas sensors is humidity interference and issues related to the selectivity and high operating temperature, which limits their response in real-time applications. In this study, we proposed nanohybrids of Pt-functionalized AlO/ZnOcore-shell nanorods (NRs) for a real-time humidity-independent acetylene gas sensor.

View Article and Find Full Text PDF

A Schottky diode based on a heterojunction of three-dimensional (3D) nanohybrid materials, formed by hybridizing reduced graphene oxide (RGO) with epitaxial vertical zinc oxide nanorods (ZnO NRs) and AlGaN(∼25 nm)/GaN is presented as a new class of high-performance chemical sensors. The RGO nanosheet layer coated on the ZnO NRs enables the formation of a direct Schottky contact with the AlGaN layer. The sensing results of the Schottky diode with respect to NO, SO, and HCHO gases exhibit high sensitivity (0.

View Article and Find Full Text PDF

The accuracy of a bioassay based on smartphone-integrated fluorescent biosensors has been limited due to the occurrence of false signals from non-specific reactions as well as a high background and low signal-to-noise ratios for complementary metal oxide semiconductor image sensors. To overcome this problem, we demonstrate dual-wavelength fluorescent detection of biomolecules with high accuracy. Fluorescent intensity can be quantified using dual wavelengths simultaneously, where one decreases and the other increases, as the target analytes bind to the split capture and detection aptamer probes.

View Article and Find Full Text PDF

A mogul-patterned stretchable substrate with multidirectional stretchability and minimal fracture of layers under high stretching is fabricated by double photolithography and soft lithography. Au layers and a reduced graphene oxide chemiresistor on a mogul-patterned poly(dimethylsiloxane) substrate are stable and durable under various stretching conditions. The newly designed mogul-patterned stretchable substrate shows great promise for stretchable electronics.

View Article and Find Full Text PDF

A flexible ultraviolet (UV) photodetector based on ZnO nanorods (NRs) as nanostructure sensing materials integrated into a graphene (Gr) field-effect transistor (FET) platform is investigated with high performance. Based on the negative shift of the Dirac point (VDirac) in the transfer characteristics of a phototransistor, high-photovoltage responsivity (RV) is calculated with a maximum value of 3 × 10(8) V W(-1). The peak response at a wavelength of ∼365 nm indicated excellent selectivity to UV light.

View Article and Find Full Text PDF

Ultraviolet (UV) photodetectors based on ZnO nanostructure/graphene (Gr) hybrid-channel field-effect transistors (FETs) are investigated under illumination at various incident photon intensities and wavelengths. The time-dependent behaviors of hybrid-channel FETs reveal a high sensitivity and selectivity toward the near-UV region at the wavelength of 365 nm. The devices can operate at low voltage and show excellent selectivity, high responsivity (RI ), and high photoconductive gain (G).

View Article and Find Full Text PDF

Piezoelectric coupling phenomena in a graphene field-effect transistor (GFET) with a nano-hybrid channel of chemical-vapor-deposited Gr (CVD Gr) and vertically aligned ZnO nanorods (NRs) under mechanical pressurization were investigated. Transfer characteristics of the hybrid channel GFET clearly indicated that the piezoelectric effect of ZnO NRs under static or dynamic pressure modulated the channel conductivity (σ) and caused a positive shift of 0.25% per kPa in the Dirac point.

View Article and Find Full Text PDF