The self-expressive coefficient plays a crucial role in the self-expressiveness-based subspace clustering method. To enhance the precision of the self-expressive coefficient, we propose a novel deep subspace clustering method, named grouping belief-based deep contrastive subspace clustering (GRESS), which integrates the clustering information and higher-order relationship into the coefficient matrix. Specifically, we develop a deep contrastive subspace clustering module to enhance the learning of both self-expressive coefficients and cluster representations simultaneously.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Inferring the interactions between genes is essential for understanding the mechanisms underlying biological processes. Gene networks will change along with the change of environment and state. The accumulation of gene expression data from multiple states makes it possible to estimate the gene networks in various states based on computational methods.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
July 2024
Binding affinity prediction of three-dimensional (3D) protein-ligand complexes is critical for drug repositioning and virtual drug screening. Existing approaches usually transform a 3D protein-ligand complex to a two-dimensional (2D) graph, and then use graph neural networks (GNNs) to predict its binding affinity. However, the node and edge features of the 2D graph are extracted based on invariant local coordinate systems of the 3D complex.
View Article and Find Full Text PDFMotivation: Single-cell clustering plays a crucial role in distinguishing between cell types, facilitating the analysis of cell heterogeneity mechanisms. While many existing clustering methods rely solely on gene expression data obtained from single-cell RNA sequencing techniques to identify cell clusters, the information contained in mono-omic data is often limited, leading to suboptimal clustering performance. The emergence of single-cell multi-omics sequencing technologies enables the integration of multiple omics data for identifying cell clusters, but how to integrate different omics data effectively remains challenging.
View Article and Find Full Text PDFMotivation: Retrosynthesis is a critical task in drug discovery, aimed at finding a viable pathway for synthesizing a given target molecule. Many existing approaches frame this task as a graph-generating problem. Specifically, these methods first identify the reaction center, and break a targeted molecule accordingly to generate the synthons.
View Article and Find Full Text PDFIntegrating single-cell datasets produced by multiple omics technologies is essential for defining cellular heterogeneity. Mosaic integration, in which different datasets share only some of the measured modalities, poses major challenges, particularly regarding modality alignment and batch effect removal. Here, we present a deep probabilistic framework for the mosaic integration and knowledge transfer (MIDAS) of single-cell multimodal data.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
December 2023
Cell type identification is a crucial step towards the study of cellular heterogeneity and biological processes. Advances in single-cell sequencing technology have enabled the development of a variety of clustering methods for cell type identification. However, most of existing methods are designed for clustering single omic data such as single-cell RNA-sequencing (scRNA-seq) data.
View Article and Find Full Text PDFDetecting protein complexes is critical for studying cellular organizations and functions. The accumulation of protein-protein interaction (PPI) data enables the identification of protein complexes computationally. Although a great number of computational methods have been proposed to identify protein complexes from PPI networks, most of them ignore the signs of PPIs that reflect the ways proteins interact (activation or inhibition).
View Article and Find Full Text PDFComput Struct Biotechnol J
January 2023
Cancer is a complex disease caused primarily by genetic variants. Reconstructing gene networks within tumors is essential for understanding the functional regulatory mechanisms of carcinogenesis. Advances in high-throughput sequencing technologies have provided tremendous opportunities for inferring gene networks via computational approaches.
View Article and Find Full Text PDFAdvances in single-cell RNA sequencing (scRNA-seq) technologies has provided an unprecedent opportunity for cell-type identification. As clustering is an effective strategy towards cell-type identification, various computational approaches have been proposed for clustering scRNA-seq data. Recently, with the emergence of cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), the cell surface expression of specific proteins and the RNA expression on the same cell can be captured, which provides more comprehensive information for cell analysis.
View Article and Find Full Text PDFBrief Funct Genomics
July 2022
Identification of cancer-related genes is helpful for understanding the pathogenesis of cancer, developing targeted drugs and creating new diagnostic and therapeutic methods. Considering the complexity of the biological laboratory methods, many network-based methods have been proposed to identify cancer-related genes at the global perspective with the increasing availability of high-throughput data. Some studies have focused on the tissue-specific cancer networks.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
April 2023
Advances in high-throughput experimental technologies promote the accumulation of vast number of biomedical data. Biomedical link prediction and single-cell RNA-sequencing (scRNA-seq) data imputation are two essential tasks in biomedical data analyses, which can facilitate various downstream studies and gain insights into the mechanisms of complex diseases. Both tasks can be transformed into matrix completion problems.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
January 2022
IEEE/ACM Trans Comput Biol Bioinform
October 2022
Motivation: Differential network analysis is an important tool to investigate the rewiring of gene interactions under different conditions. Several computational methods have been developed to estimate differential networks from gene expression data, but most of them do not consider that gene network rewiring may be driven by the differential expression of individual genes. New differential network analysis methods that simultaneously take account of the changes in gene interactions and changes in expression levels are needed.
View Article and Find Full Text PDFThis study aims to investigate healthcare workers' (HCWs) willingness to receive SARS-CoV-2 vaccine in Zhejiang and to discover the related influential factors. The survey was conducted in six regions of Zhejiang Province, China, and 13 hospitals and 12 Centers for Disease Control and Prevention (CDC) were incorporated into the survey research. Participants were healthcare workers and a total of 3726 questionnaires were collected online, of which 3634 (97.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
January 2022
The identification of cancer subtypes is of great importance for understanding the heterogeneity of tumors and providing patients with more accurate diagnoses and treatments. However, it is still a challenge to effectively integrate multiple omics data to establish cancer subtypes. In this paper, we propose an unsupervised integration method, named weighted multi-view low rank representation (WMLRR), to identify cancer subtypes from multiple types of omics data.
View Article and Find Full Text PDFDisease-gene association through genome-wide association study (GWAS) is an arduous task for researchers. Investigating single nucleotide polymorphisms that correlate with specific diseases needs statistical analysis of associations. Considering the huge number of possible mutations, in addition to its high cost, another important drawback of GWAS analysis is the large number of false positives.
View Article and Find Full Text PDFComput Struct Biotechnol J
September 2020
Inferring gene networks from gene expression data is important for understanding functional organizations within cells. With the accumulation of single-cell RNA sequencing (scRNA-seq) data, it is possible to infer gene networks at single cell level. However, due to the characteristics of scRNA-seq data, such as cellular heterogeneity and high sparsity caused by dropout events, traditional network inference methods may not be suitable for scRNA-seq data.
View Article and Find Full Text PDF