Objectives: This study aims to predict the high-grade pattern (HGP) of stage IA lung invasive adenocarcinoma (IAC) based on the high-resolution CT (HRCT) features.
Methods: The clinical, pathological, and HRCT imaging data of 457 patients (from bicentric) with pathologically confirmed stage IA IAC (459 lesions in total) were retrospectively analyzed. The 459 lesions were classified into high-grade pattern (HGP) (n = 101) and non-high-grade pattern (n-HGP) (n = 358) groups depending on the presence of HGP (micropapillary and solid) in pathological results.
Background: Due to submucosal infiltration's biological nature along the airway, adenoid cystic carcinoma (ACC) frequently leaves positive surgical margins. This study evaluated the clinicopathologic, and computed tomography (CT) features for predicting surgical margin status in central airway ACC.
Methods: We retrospectively analyzed the files of 71 patients with ACC of the central airway proven by histopathology and surgery who had presented between January 2010 and December 2018.
Purpose: To evaluate computed tomography (CT) features and establish a predictive model for the clinical diagnosis and prognosis of tracheal adenoid cystic carcinoma (ACC).
Method: From January 2010 to December 2018, 82 patients with tracheal tumors, including 46 patients with ACC confirmed by surgery and histopathology, were enrolled in this study. These patients' clinicopathologic information, CT features and survival outcomes were recorded and analyzed.
A computational hemodynamics method was employed to investigate how the morphotype and functional state of aortic valve would affect the characteristics of blood flow in aortas with pathological dilation, especially the intensity and distribution of flow turbulence. Two patient-specific aortas diagnosed to have pathological dilation of the ascending segment while differential aortic valve conditions (i.e.
View Article and Find Full Text PDFFront Aging Neurosci
November 2018
: Idiopathic normal pressure hydrocephalus (iNPH) is known as a treatable form of dementia. Network analysis is emerging as a useful method to study neurological disorder diseases. No study has examined changes of structural brain networks of iNPH patients.
View Article and Find Full Text PDFIt is still not clear whether Notch1 signaling inhibition can promote functional outcomes after stroke, given that it plays time-dependent roles in the sequential process of endogenous neurogenesis. The purpose of this study was to identify the appropriate time frame for Notch1 signaling inhibition according to the temporal evolution of Notch1 signaling activation and the responses of neural stem cells (NSCs), in order to target it for therapeutic intervention and stimulate neurorestorative strategies after stroke. Sprague-Dawley (SD) rats were subjected to 90-min of middle cerebral artery occlusion (MCAO).
View Article and Find Full Text PDFObjective: The Notch signaling pathway is involved in angiogenesis induced by brain ischemia and can be efficiently inhibited by the -secretase inhibitor N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butyl ester (DAPT). The aim of the present study was to noninvasively investigate the effect of DAPT treatment on angiogenesis in brain repair after stroke using magnetic resonance imaging (MRI).
Methods: Sprague-Dawley rats ( = 40) were subjected to 90 minutes of transient middle cerebral artery (MCA) occlusion and treated with PBS ( = 20) or DAPT ( = 20) at 72 hours after the onset of ischemia.
Notch homolog 1 (Notch 1) signaling is regarded as a potential therapeutic target for modulating the inflammatory response and exhibiting neuroprotective effects in cerebral injury following stroke. N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t‑butylester (DAPT) efficiently inhibits activation of the Notch 1 signaling pathway in microglia and may protect brain tissue from ischemic damage. However, the temporal proliferation and morphological alterations of microglia/macrophages throughout progression of the disease, as well as the comprehensive alterations of the whole brain following DAPT treatment, remain to be elucidated.
View Article and Find Full Text PDFBackground: The purpose of our study is to explore the relationship between recovery of neural function and transformation of the internal capsule (IC) after transient middle cerebral artery occlusion (MCAO) by using diffusion kurtosis imaging (DKI).
Methods: Six male adult Sprague-Dawley rats implemented with transient MCAO were used in this study. Sensorimotor function was assessed according to repetitive behavioral testing on day 1, 3, 7, 14, and 28 after cerebral ischemia.
Background: The early dysfunction and subsequent recovery after stroke, characterized by the destruction and remodeling of connective pathways between cortex and subcortical regions, is associated with neuroinflammation. As major components of the inflammatory process, reactive astrocytes have double-edged effects on pathological progression. The temporal patterns of astrocyte and neuronal pathway activity can be revealed by systemic and stereotactic manganese-enhanced magnetic resonance imaging (MEMRI), respectively.
View Article and Find Full Text PDFBackground: Focal cerebral ischemia results in delayed neurodegeneration in remote brain regions, such as the substantia nigra. To date, a reasonable explanation is still lacking regarding the correlation of magnetic resonance (MR) signal pseudo-normalization following a transient abnormal change and subsequent progressive pathological damage.
Purpose: To characterize the substantia nigra following middle cerebral artery occlusion and to evaluate the potential pathophysiological changes associated with the pseudo-normalization of MR signals in the substantia nigra at the subacute stage after stroke onset.
Background: Being one class of magnetic resonance imaging (MRI) contrast agents, ultrasmall superparamagnetic particles of iron oxides (USPIO) bear the potential to study neuroinflammation following stroke, but there is still debate over whether the iron oxides particles may enter the brain tissue passively over a damaged blood-brain barrier (BBB).
Purpose: To compare the enhancement patterns of USPIO and gadopentate dimeglumine (Gd-DTPA) during the subacute stage of focal cerebral ischemia, to examine the relationship between USPIO enhancement and BBB disturbance, as well as with neuroinflammatory cell response.
Material And Methods: Multiple MR sequences were obtained on days 3 and 6 after transient middle cerebral artery occlusion induced in rats with and without the application of USPIO and Gd-DTPA.
Background And Purpose: Ultrasmall superparamagnetic iron oxide (USPIO) particles to enhance MRI have been used to study neuroinflammation in vivo. Our purpose was to observe the USPIO-enhanced MR signal alterations in the primary ischemic lesion and ipsilateral substantia nigra after middle cerebral artery occlusion (MCAO) to verify the subsequent sequelae of neuroinflammation seen in the primary ischemic focus and secondary degeneration region.
Materials And Methods: Sprague-Dawley rats were subjected to transient MCAO.