Dengue disease is a viral infection that has been widespread in tropical regions, such as Southeast Asia, South Asia and South America. A worldwide effort has been made over a few decades to halt the spread of the disease and reduce fatalities. Lateral flow assay (LFA), a paper-based technology, is used for dengue virus detection and identification because of its simplicity, low cost and fast response.
View Article and Find Full Text PDFWe describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol.
View Article and Find Full Text PDFMagnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body.
View Article and Find Full Text PDFPterygium is a progressive disease of the human eye arising from sub-conjunctival tissue and extending onto the cornea. Due to its invasive growth, pterygium can reach the pupil compromising visual function. Currently available medical treatments have limited success in suppressing efficiently the disease.
View Article and Find Full Text PDFMagnetically induced hyperthermia has reached a milestone in medical nanoscience and in phase III clinical trials for cancer treatment. As it relies on the heat generated by magnetic nanoparticles (NPs) when exposed to an external alternating magnetic field, the heating ability of these NPs is of paramount importance, so is their synthesis. We present a simple and fast method to produce iron oxide nanostructures with excellent heating ability that are colloidally stable in water.
View Article and Find Full Text PDFSuperparamagnetic cubic iron oxide nanoparticles (IONPs) were synthesized and functionalized with meso-2,3-dimercaptosuccinic acid (DMSA) as a potential agent for cancer treatment. Monodisperse cubic IONPs with a high value of saturation magnetization were synthesized by thermal decomposition method and functionalized with DMSA via ligand exchange reaction, and their cytotoxic effects on HeLa cells were investigated. DMSA functionalized cubic IONPs with an edge length of 24.
View Article and Find Full Text PDFMagnetic inductive heating (MIH) has been a topic of great interest because of its potential applications, especially in biomedicine. In this paper, the parameters characteristic for magnetic inductive heating power including maximum specific loss power (SLP), optimal nanoparticle diameter (D) and its width (ΔD) are considered as being dependent on magnetic nanoparticle anisotropy (K). The calculated results suggest 3 different Néel-domination (N), overlapped Néel/Brownian (NB), and Brownian-domination (B) regions.
View Article and Find Full Text PDFThe production of metabolic energy in form of ATP by oxidative phosphorylation depends on the coordinated action of hundreds of nuclear-encoded mitochondrial proteins and a handful of proteins encoded by the mitochondrial genome (mtDNA). We used the yeast as a model system to systematically identify the genes contributing to this process. Integration of genome-wide high-throughput growth assays with previously published large data sets allowed us to define with high confidence a set of 254 nuclear genes that are indispensable for respiratory growth.
View Article and Find Full Text PDFStem cell tracking in cellular therapy and regenerative medicine is an urgent need, superparamagnetic iron oxide nanoparticles (IONPs) could be used as contrast agents in magnetic resonance imaging (MRI) that allows visualization of the implanted cells ensuring they reach the desired sites in vivo. Herein, we report the study of the interaction of 3,4-dihydroxyhydrocinnamic acid (DHCA) functionalized IONPs that have desirable properties for T - weighted MRI, with bone marrow-derived primary human mesenchymal stem cells (hMSCs). Using the multiparametric high-content imaging method, we evaluate cell viability, formation of reactive oxygen species, mitochondrial health, as well as cell morphology and determine that the hMSCs are minimally affected after labelling with IONPs.
View Article and Find Full Text PDFCorrection for 'High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles' by Ngo T. Dung et al., Nanoscale, 2017, DOI: 10.
View Article and Find Full Text PDFHigh magnetisation and monodisperse CoFe alloy nanoparticles are desired for a wide range of biomedical applications. However, these CoFe nanoparticles are prone to oxidation, resulting in the deterioration of their magnetic properties. In the current work, CoFe alloy nanoparticles were prepared by thermal decomposition of cobalt and iron carbonyls in organic solvents at high temperatures.
View Article and Find Full Text PDFIn our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(III) and Co(II) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%).
View Article and Find Full Text PDFCore-shell magnetic nanoparticles have received significant attention recently and are actively investigated owing to their large potential for a variety of applications. Here, the synthesis and characterization of bimetallic nanoparticles containing a magnetic core and a gold shell are discussed. The gold shell facilitates, for example, the conjugation of thiolated biological molecules to the surface of the nanoparticles.
View Article and Find Full Text PDFContrast Media Mol Imaging
January 2009
Two samples of polymer-coated cobalt nanoparticles were synthesized and dispersed in agarose gel and water. The relaxivities r1 and r2 of the two samples were obtained at different temperatures (25, 37 and 40 degrees C) and magnetic field strengths (1.5 and 3 T).
View Article and Find Full Text PDFMonodisperse water-soluble Co and gamma-Fe(2)O(3) nanoparticles have been prepared in a single-step method using stimuli-sensitive polymers.
View Article and Find Full Text PDF