Resistance to chimaeric antigen receptor (CAR) T cell therapy develops through multiple mechanisms, most notably antigen loss and tumour-induced immune suppression. It has been suggested that T cells expressing multiple CARs may overcome the resistance of tumours and that T cells expressing receptors that switch inhibitory immune-checkpoint signals into costimulatory signals may enhance the activity of the T cells in the tumour microenvironment. However, engineering multiple features into a single T cell product is difficult because of the transgene-packaging constraints of current gene-delivery vectors.
View Article and Find Full Text PDFThe mechanisms and extent to which inhalation of oxidant gases damage the mitochondrial genome contributing to the development of acute and chronic lung injury have not been investigated. C57BL/6 mice exposed to chlorine (Cl ) gas and returned to room air, developed progressive loss of lung DNA glycosylase OGG1, significant oxidative injury to mtDNA, decreased intact lung mitochondrial (mt) DNA, generation of inflammatory pathway by DAMPs causing airway and alveolar injury with significant mortality. Global proteomics identified over 1400 lung proteins with alteration of key mitochondrial proteins at 24 h post Cl exposure.
View Article and Find Full Text PDFBackroud: Keratitis caused by Lasiodiplodia theobromae is rare and typically associated with a poor prognosis. Current literature lacks sufficient evidence on effective management of patients with this condition.
Case Presentation: A 74-year-old former agricultural worker presented with a red right eye, discomfort, and decreased visual acuity, progressing over three days without treatment.
The thymus is essential for establishing adaptive immunity yet undergoes age-related involution that leads to compromised immune responsiveness. The thymus is also extremely sensitive to acute insult and although capable of regeneration, this capacity declines with age for unknown reasons. We applied single-cell and spatial transcriptomics, lineage-tracing and advanced imaging to define age-related changes in nonhematopoietic stromal cells and discovered the emergence of two atypical thymic epithelial cell (TEC) states.
View Article and Find Full Text PDFIntroduction: Hypoxia due to sinus obstruction is a major pathogenic mechanism leading to sinusitis. The objective of the current study is to define the electrophysiologic characteristics of hypoxia in vitro and in vivo.
Methods: Cystic fibrosis bronchoepithelial cells expressing wild-type cystic fibrosis transmembrane conductance regulator (CFTR) and human sinonasal epithelial cells were exposed to 1% or atmospheric O for 24 h.
Herein, we tested the hypothesis that low molecular weight hyaluronan (LMW-HA) inhibits lung epithelial ions transport in-vivo, ex-vivo, and in-vitro by activating the calcium-sensing receptor (CaSR). Twenty-four hours post intranasal instillation of 50-150 µg/ml LMW-HA to C57BL/6 mice, there was a 75% inhibition of alveolar fluid clearance (AFC), a threefold increase in the epithelial lining fluid (ELF) depth, and a 20% increase in lung wet/dry (W/D) ratio. Incubation of human and mouse precision cut lung slices with 150 µg/ml LMW-HA reduced the activity and the open probability (P) of epithelial sodium channel (ENaC) in alveolar epithelial type 2 (ATII) cells, and in mouse tracheal epithelial cells (MTEC) monolayers as early as 4 h.
View Article and Find Full Text PDFThe intestinal microbiota is essential for the fermentation of dietary fiber into short-chain fatty acids (SCFA) such as butyrate, acetate, and propionate. SCFAs can bind to the G-protein-coupled receptors GPR43 and GPR109A (HCAR2), with varying affinities to promote cellular effects in metabolism or changes in immune function. We explored the role of GPR109A as the main receptor for butyrate in mouse models of allogeneic hematopoietic cell transplantation (allo-HCT) and graft-versus-host disease (GVHD).
View Article and Find Full Text PDFPhysiology (Bethesda)
September 2021
The halogens chlorine (Cl) and bromine (Br) are highly reactive oxidizing elements with widespread industrial applications and a history of development and use as chemical weapons. When inhaled, depending on the dose and duration of exposure, they cause acute and chronic injury to both the lungs and systemic organs that may result in the development of chronic changes (such as fibrosis) and death from cardiopulmonary failure. A number of conditions, such as viral infections, coexposure to other toxic gases, and pregnancy increase susceptibility to halogens significantly.
View Article and Find Full Text PDFLipopolysaccharide (LPS) serves as the interface between gram-negative bacteria (GNB) and the innate immune response in respiratory epithelial cells (REC). Herein, we describe a novel biological role of LPS that permits GNB to persist in the respiratory tract through inducing CFTR and mucociliary dysfunction. LPS reduced cystic fibrosis transmembrane conductance regulater (CFTR)-mediated short-circuit current in mammalian REC in Ussing chambers and nearly abrogated CFTR single channel activity (defined as forskolin-activated Cl currents) in patch clamp studies, effects of which were blocked with toll-like receptor (TLR)-4 inhibitor.
View Article and Find Full Text PDFBackground: Abnormal chloride (Cl) transport has a detrimental impact on mucociliary clearance in both cystic fibrosis (CF) and non-CF chronic rhinosinusitis. Ginseng is a medicinal plant noted to have anti-inflammatory and antimicrobial properties. The present study aims to assess the capability of red ginseng aqueous extract (RGAE) to promote transepithelial Cl secretion in nasal epithelium.
View Article and Find Full Text PDFAnn N Y Acad Sci
November 2020
Chlorine (Cl ) and bromine (Br ) are produced in large quantities throughout the world and used in the industry and the sanitation of water. These halogens can pose a significant threat to public health when released into the atmosphere during transportation and industrial accidents, or as acts of terrorism. In this review, we discuss the evidence showing that the activity of Cl and Br , and of products formed by their interaction with biomolecules, fragment high-molecular-weight hyaluronan (HMW-HA), a key component of the interstitial space and present in epithelial cells, to form proinflammatory, low-molecular-weight hyaluronan fragments that increase intracellular calcium (Ca ) and activate RAS homolog family member A (RhoA) in airway smooth muscle and epithelial and microvascular cells.
View Article and Find Full Text PDFWe previously reported that the highly reactive cell-free heme (CFH) is increased in the plasma of patients with chronic lung injury and causes pulmonary edema in animal model of acute respiratory distress syndrome (ARDS) post inhalation of halogen gas. However, the mechanisms by which CFH causes pulmonary edema are unclear. Herein we report for the first time that CFH and chlorinated lipids (formed by the interaction of halogen gas, Cl, with plasmalogens) are increased in the plasma of patients exposed to Cl gas.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
March 2020
We investigated the mechanisms involved in the development of airway hyperresponsiveness (AHR) following exposure of mice to halogens. Male mice (C57BL/6; 20-25 g) exposed to either bromine (Br) or Cl (600 or 400 ppm, respectively, for 30 min) developed AHR 24 h after exposure. Nifedipine (5 mg/kg body wt; an L-type calcium channel blocker), administered subcutaneously after Br or Cl exposure, produced higher AHR compared with Br or Cl alone.
View Article and Find Full Text PDFDisruption of intestinal microbial communities appears to underlie many human illnesses, but the mechanisms that promote this dysbiosis and its adverse consequences are poorly understood. In patients who received allogeneic hematopoietic cell transplantation (allo-HCT), we describe a high incidence of enterococcal expansion, which was associated with graft-versus-host disease (GVHD) and mortality. We found that also expands in the mouse gastrointestinal tract after allo-HCT and exacerbates disease severity in gnotobiotic models.
View Article and Find Full Text PDFNuclear factor erythroid-derived 2-like 2 (Nrf2) is a ubiquitously expressed transcription factor that is well known for its role in regulating the cellular redox pathway. Although there is mounting evidence suggesting a critical role for Nrf2 in hematopoietic stem cells and innate leukocytes, little is known about its involvement in T-cell biology. In this study, we identified a novel role for Nrf2 in regulating alloreactive T-cell function during allogeneic hematopoietic cell transplantation (allo-HCT).
View Article and Find Full Text PDFSevere influenza (IAV) infection can develop into bronchopneumonia and edema, leading to acquired respiratory distress syndrome (ARDS) and pathophysiology. Underlying causes for pulmonary edema and aberrant fluid regulation largely remain unknown, particularly regarding the role of viral-mediated mechanisms. Herein, we show that distinct IAV strains reduced the functions of the epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane regulator (CFTR) in murine respiratory and alveolar epithelia in vivo, as assessed by measurements of nasal potential differences and single-cell electrophysiology.
View Article and Find Full Text PDFBackground: Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene result in defective Cl transport and cause chronic bacterial infections in the upper and lower airways of cystic fibrosis (CF) patients. Ivacaftor is a CFTR potentiator that improves Cl transport in CF patients with at least 1 copy of the G551D mutation. Resveratrol is also a potent CFTR potentiator that increases determinants of mucociliary transport.
View Article and Find Full Text PDFBone marrow transplantation (BMT) offers curative potential for patients with high-risk hematologic malignancies, but the post-transplantation period is characterized by profound immunodeficiency. Recent studies indicate that the intestinal microbiota not only regulates mucosal immunity, but can also contribute to systemic immunity and hematopoiesis. Using antibiotic-mediated microbiota depletion in a syngeneic BMT mouse model, here we describe a role for the intestinal flora in hematopoietic recovery after BMT.
View Article and Find Full Text PDFThis study aimed to determine the effects of salinity on the biomass behavior and its diversity in activated sludge process (ASP) treating the table olive processing wastewater (TOPW), and to evaluate ASP performances under increased TOPW concentration feeding, the numerical abundance, diversity and activity of the biomass, removal efficiencies of chemical oxygen demand (COD), phenolic compounds, nitrogen and phosphorus were evaluated. Results showed that biomass growth is very high and became faster according to an increase in the percentage of TOPW feeding and reached 5.2 g l.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
February 2018
The thymus is not only extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood, and this capacity diminishes considerably with age. We show that thymic endothelial cells (ECs) comprise a critical pathway of regeneration via their production of bone morphogenetic protein 4 (BMP4) ECs increased their production of BMP4 after thymic damage, and abrogating BMP4 signaling or production by either pharmacologic or genetic inhibition impaired thymic repair.
View Article and Find Full Text PDFThere is a substantial unmet clinical need for new strategies to protect the hematopoietic stem cell (HSC) pool and regenerate hematopoiesis after radiation injury from either cancer therapy or accidental exposure. Increasing evidence suggests that sex hormones, beyond their role in promoting sexual dimorphism, regulate HSC self-renewal, differentiation, and proliferation. We and others have previously reported that sex-steroid ablation promotes bone marrow (BM) lymphopoiesis and HSC recovery in aged and immunodepleted mice.
View Article and Find Full Text PDFA variant of the autophagy gene is associated with Crohn's disease, an inflammatory bowel disease (IBD), and poor survival in allogeneic hematopoietic stem cell transplant recipients. We demonstrate that ATG16L1 in the intestinal epithelium is essential for preventing loss of Paneth cells and exaggerated cell death in animal models of virally triggered IBD and allogeneic hematopoietic stem cell transplantation. Intestinal organoids lacking ATG16L1 reproduced this loss in Paneth cells and displayed TNFα-mediated necroptosis, a form of programmed necrosis.
View Article and Find Full Text PDF