Publications by authors named "Lazio T"

Recent advances with space navigation technologies developed by NASA in space-based atomic clocks and pulsar X-ray navigation, combined with past successes in autonomous navigation using optical imaging, brings to the forefront the need to compare space navigation using optical, radiometric, and pulsar-based measurements using a common set of assumptions and techniques. This review article examines these navigation data types in two different ways. First, a simplified deep space orbit determination problem is posed that captures key features of the dynamics and geometry, and then each data type is characterized for its ability to solve for the orbit.

View Article and Find Full Text PDF

Fast radio bursts (FRBs) are flashes of unknown physical origin. The majority of FRBs have been seen only once, although some are known to generate multiple flashes. Many models invoke magnetically powered neutron stars (magnetars) as the source of the emission.

View Article and Find Full Text PDF

We search for a first-order phase transition gravitational wave signal in 45 pulsars from the NANOGrav 12.5-year dataset. We find that the data can be modeled in terms of a strong first order phase transition taking place at temperatures below the electroweak scale.

View Article and Find Full Text PDF

Fast radio bursts (FRBs) are brief, bright, extragalactic radio flashes. Their physical origin remains unknown, but dozens of possible models have been postulated. Some FRB sources exhibit repeat bursts.

View Article and Find Full Text PDF

Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source-FRB 121102-has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source.

View Article and Find Full Text PDF

Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies.

View Article and Find Full Text PDF

Transient astronomical sources are typically powered by compact objects and usually signify highly explosive or dynamic events. Although high-time-resolution observations are often possible in radio astronomy, they are usually limited to quite narrow fields of view. The dynamic radio sky is therefore poorly sampled, in contrast to the situation in the X-ray and gamma-ray bands in which wide-field instruments routinely detect transient sources.

View Article and Find Full Text PDF

We report a search for radio continuum emission from the gamma-ray pulsar Geminga. We have used the VLA to image the location of the optical counterpart of Geminga at 74 and 326 MHz. We detect no radio counterpart.

View Article and Find Full Text PDF