Publications by authors named "Lazerwith S"

Article Synopsis
  • Researchers discovered a strong and selective antagonist for the lysophosphatidic acid receptor 1 (LPAR1), which has antifibrotic properties, initially validated through a specific assay involving MRTF-A.* -
  • Structural modifications improved the compound's stability and pharmacokinetics, leading to a promising candidate for oral dosing that effectively blocked LPA-induced histamine release and showed efficacy against lung fibrosis in preclinical tests.* -
  • Despite its potential, the development of the LPAR1 antagonist was discontinued due to observed CNS toxicity in dog models, raising safety concerns for clinical use in idiopathic pulmonary fibrosis (IPF).*
View Article and Find Full Text PDF

Bictegravir (BIC) is a potent small-molecule integrase strand-transfer inhibitor (INSTI) and a component of Biktarvy, a single-tablet combination regimen that is currently approved for the treatment of human immunodeficiency virus type 1 (HIV-1) infection. The properties, pharmacokinetics (PK), and drug-drug interaction (DDI) profile of BIC were characterised and .BIC is a weakly acidic, ionisable, lipophilic, highly plasma protein-bound BCS class 2 molecule, which makes it difficult to predict human PK using standard methods.

View Article and Find Full Text PDF

The standard of care for the treatment of chronic hepatitis B (CHB) is typically lifelong treatment with nucleos(t)ide analogs (NAs), which suppress viral replication and provide long-term clinical benefits. However, infectious virus can still be detected in patients who are virally suppressed on NA therapy, which may contribute to the failure of these agents to cure most CHB patients. Accordingly, new antiviral treatment options are being developed to enhance the suppression of hepatitis B virus (HBV) replication in combination with NAs ("antiviral intensification").

View Article and Find Full Text PDF

Nucleos(t)ide analogs are standard-of-care for the treatment of chronic hepatitis B and can effectively reduce hepatitis B virus (HBV) replication but rarely leads to cure. Nucleos(t)ide analogs do not directly eliminate the viral episome, therefore treatment cessation typically leads to rapid viral rebound. While treatment is effective, HBV DNA is still detectable (although not quantifiable) in the periphery of the majority of nucleos(t)ide analog treated HBV patients, even after prolonged treatment.

View Article and Find Full Text PDF

The HIV integrase (IN) strand transfer inhibitor (INSTI) bictegravir (BIC) has a long dissociation half-life (t) from wild-type IN-DNA complexes: BIC 163 hr > dolutegravir (DTG) 96 hr > raltegravir (RAL) 10 hr > elvitegravir (EVG) 3.3 hr. In cells, BIC had more durable antiviral activity against wild-type HIV after drug washout than RAL or EVG.

View Article and Find Full Text PDF

Oral antiretroviral agents provide life-saving treatments for millions of people living with HIV, and can prevent new infections via pre-exposure prophylaxis. However, some people living with HIV who are heavily treatment-experienced have limited or no treatment options, owing to multidrug resistance. In addition, suboptimal adherence to oral daily regimens can negatively affect the outcome of treatment-which contributes to virologic failure, resistance generation and viral transmission-as well as of pre-exposure prophylaxis, leading to new infections.

View Article and Find Full Text PDF

Bictegravir (BIC; GS-9883), a novel, potent, once-daily, unboosted inhibitor of HIV-1 integrase (IN), specifically targets IN strand transfer activity (50% inhibitory concentration [IC] of 7.5 ± 0.3 nM) and HIV-1 integration in cells.

View Article and Find Full Text PDF

One of the most challenging goals of hepatitis C virus (HCV) research is to develop well-tolerated regimens with high cure rates across a variety of patient populations. Such a regimen will likely require a combination of at least two distinct direct-acting antivirals (DAAs). Combining two or more DAAs with different resistance profiles increases the number of mutations required for viral breakthrough.

View Article and Find Full Text PDF

Investigation of thiophene-2-carboxylic acid HCV NS5B site II inhibitors, guided by measurement of cell culture medium binding, revealed the structure-activity relationships for intrinsic cellular potency. The pharmacokinetic profile was enhanced through incorporation of heterocyclic ethers on the N-alkyl substituent. Hydroxyl groups were incorporated to modulate protein binding.

View Article and Find Full Text PDF

GS-9669 is a highly optimized thumb site II nonnucleoside inhibitor of the hepatitis C virus (HCV) RNA polymerase, with a binding affinity of 1.35 nM for the genotype (GT) 1b protein. It is a selective inhibitor of HCV RNA replication, with a mean 50% effective concentration (EC(50)) of ≤ 11 nM in genotype 1 and 5 replicon assays, but lacks useful activity against genotypes 2 to 4.

View Article and Find Full Text PDF

A novel series of HCV replication inhibitors based on a pyrido[3,2-d]pyrimidine core were optimized for pharmacokinetics (PK) in rats. Several associations between physicochemical properties and PK were identified and exploited to guide the design of compounds. In addition, a simple new metric that may aid in the prediction of bioavailability for compounds with higher polar surface area is described (3*HBD-cLogP).

View Article and Find Full Text PDF

Fatty acid amide hydrolase (FAAH) is an integral membrane serine hydrolase that degrades the fatty acid amide family of signaling lipids, including the endocannabinoid anandamide. Genetic or pharmacological inactivation of FAAH leads to analgesic and anti-inflammatory phenotypes in rodents without showing the undesirable side effects observed with direct cannabinoid receptor agonists, indicating that FAAH may represent an attractive therapeutic target for the treatment of inflammatory pain and other nervous system disorders. Herein, we report the discovery and characterization of a highly efficacious and selective FAAH inhibitor PF-04457845 (23).

View Article and Find Full Text PDF

Endocannabinoids are lipid signaling molecules that regulate a wide range of mammalian behaviors, including pain, inflammation, and cognitive/emotional state. The endocannabinoid anandamide is principally degraded by the integral membrane enzyme fatty acid amide hydrolase (FAAH), and there is currently much interest in developing FAAH inhibitors to augment endocannabinoid signaling in vivo. Here, we report the discovery and detailed characterization of a highly efficacious and selective FAAH inhibitor, PF-3845.

View Article and Find Full Text PDF

The synthesis and structure-activity relationships (SAR) of a series of benzothiophene piperazine and piperidine urea FAAH inhibitors is described. These compounds inhibit FAAH by covalently modifying the enzyme's active site serine nucleophile. Activity-based protein profiling (ABPP) revealed that these urea inhibitors were completely selective for FAAH relative to other mammalian serine hydrolases.

View Article and Find Full Text PDF

Unlabelled: Insulin-like growth factor-I (IGF-I) and IGF binding proteins (IGFBPs) are trophic factors for cartilage and have been shown to be chondroprotective in animal models of osteoarthritis (OA). IGFBP-5 is degraded in joint fluid and inhibition of IGFBP-5 degradation has been shown to enhance the trophic effects of IGF-I.

Objective: To determine the identity of IGFBP-5 protease activity in human OA joint fluid.

View Article and Find Full Text PDF

Protein phosphorylation is a major mechanism of post-translational protein modification used to control cellular signaling. A challenge in phosphoproteomics is to identify the direct substrates of each protein kinase. Herein, we describe a chemical strategy for delivery of a bio-orthogonal affinity tag to the substrates of an individual protein kinase.

View Article and Find Full Text PDF