Publications by authors named "Lazaros Papadopoulos"

PEA 46 is a biobased polymer with promising properties for sustainable packaging applications, which can be obtained via polymerization of a furan 2,5-dicarboxylic acid (2,5-FDCA) derivative and a diol monomer containing internal amide bonds (46 amido diol). In the literature, PEA 46 showed a complex series of thermal transitions during DSC scans. For this reason, in this initial exploratory study PEA 46 was subjected to compression molding and the melting behavior of film samples was investigated with parallel DSC and WAXS analyses.

View Article and Find Full Text PDF

In the quest toward sustainable thermosets, research has been conducted on various polymer classes like epoxy, benzoxazines, acryl-/methacrylates, etc. One particular group that can also be utilized as sustainable inks for additive manufacturing is itaconic acid-based unsaturated polyester resins. However, due to increased viscosity of the resins, the use of reactive diluents is required to increase their processability.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA) is a readily available, compostable biobased polyester with high strength and toughness, and it is excellent for 3D printing applications. Polymer blending is an economic and easy way to improve its properties, such as its slow degradation and crystallization rates and its small elongation, and thus, make it more versatile. In this work, the effects of different 2,5-furan dicarboxylic acid (FDCA)-based polyesters on the physicochemical and mechanical properties of PLA were studied.

View Article and Find Full Text PDF

We investigate the thermal transitions and molecular mobility in new nanocomposites of biobased poly(ethylene furanoate) (PEF), by calorimetry and dielectric spectroscopy, supplemented by X-ray diffraction, Fourier transform infra-red spectroscopy and polarized light microscopy. The emphasis is placed on the facilitation of the crystallization of PEF, which is in general low and slow due to structural limitations that result in poor nucleation. Tuning of the crystalline fraction (CF) and semicrystalline morphology are important for optimization of the mechanical performance and manipulation of the permeation of small molecules (e.

View Article and Find Full Text PDF

In the era of polymers from renewable resources, polyesters derived from 2,5 furan dicarboxylic acid (FDCA) have received increasing attention due to their outstanding features. To commercialize them, it is necessary to synthesize high molecular weight polymers through efficient and simple methods. In this study, two furan-based polyesters, namely poly (propylene furanoate) (PPF) and poly(butylene furanoate) (PBF), were synthesized with the conventional two-step melt polycondensation, followed by solid-state polycondensation (SSP) conducted at different temperatures and reaction times.

View Article and Find Full Text PDF

This study deals with poly(butylene 2,5-furan-dicarboxylate), PBF, a renewable bio-based polyester expected to replace non-eco-friendly fossil-based homologues. PBF exhibits excellent gas barrier properties, which makes it promising for packaging applications; however, its rather low and slow crystallinity affects good mechanical performance. The crystallization of this relatively new polymer is enhanced here via reinforcement by introduction in situ of 1 wt % montmorillonite, MMT, nanoclays of three types (functionalizations).

View Article and Find Full Text PDF

Poly(hexylene 2,5 furan-dicarboxylate) (PHF) is a relatively new biobased polyester prepared from renewable resources, which is targeted for use in food packaging applications, owing to its great mechanical and gas barrier performance. Since both properties are strongly connected to crystallinity, the latter is enhanced here by the in situ introduction in PHF of graphene nanoplatelets and fumed silica nanoparticles, as well as mixtures of both, at low amounts. For this investigation, we employed Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and dielectric spectroscopy (BDS).

View Article and Find Full Text PDF

Polyesters based on 2,5-furandicarboxylic acid (FDCA) are a new class of biobased polymers with enormous interest, both from a scientific and industrial perspective. The commercialization of these polymers is imminent as the pressure for a sustainable economy grows, and extensive worldwide research currently takes place on developing cost-competitive, renewable plastics. The most prevalent method for imparting these polymers with new properties is copolymerization, as many studies have been published over the last few years.

View Article and Find Full Text PDF

In the field of polymer chemistry, tremendous efforts have been made over the lastdecade to replace petrochemical monomers with building blocks from renewable resources. In thisrespect, itaconic acid has been used as an alternative to acrylic acid or maleic acid in unsaturatedpolyesters for thermal or UV-curing applications. However, examples of poly(ester amide)s fromitaconic acid are scarce.

View Article and Find Full Text PDF

Plastics are perceived as modern and versatile materials, but their use is linked to numerous environmental issues as their production is based on finite raw materials (petroleum or natural gas). Additionally, their low biodegradability results in the accumulation of microplastics. As a result, there is extensive interest in the production of new, environmentally friendly, bio-based and biodegradable polymers.

View Article and Find Full Text PDF

Bio-based polyesters are a new class of materials that are expected to replace their fossil-based homologues in the near future. In this work, poly(propylene 2,5-furandicarboxylate) (PPF) nanocomposites with graphene nanoplatelets were prepared via the in-situ melt polycondensation method. The chemical structure of the resulting polymers was confirmed by H-NMR spectroscopy.

View Article and Find Full Text PDF

Poly(propylene 2,5-furan dicarboxylate) (PPF), or poly(trimethylene 2,5-furan dicarboxylate) (PTF), is a biobased alipharomatic polyester that is expected to replace its fossil-based terephthalate (PPT) and naphthate (PPN) homologues. PPF possesses exceptional gas barrier properties, but its slow crystallization rate might affect its success in specific applications in the future. Therefore, a series of PPF based nanocomposites with the nanoclays Cloisite-Na (MMT), Cloisite-20A (MMT 20A), and halloysite nanotubes (HNT) were synthesized via the in situ transterification and polycondensation method.

View Article and Find Full Text PDF

Background: Three-dimensional virtual worlds are becoming very popular among educators in the medical field. Virtual clinics and patients are already used for case study and role play in both undergraduate and continuing education levels. Dental education can also take advantage of the virtual world's pedagogical features in order to give students the opportunity to interact with virtual patients (VPs) and practice in treatment planning.

View Article and Find Full Text PDF