Publications by authors named "Layne Adams"

Article Synopsis
  • Tularemia is a zoonotic disease caused by Francisella tularensis, seen widely in wildlife across the northern hemisphere, including Alaska.
  • Research in Arctic Alaska (2014-2017) found F. tularensis antibodies in 14.7% of sampled wildlife, indicating exposure across various species, notably higher in foxes and Arctic ground squirrels.
  • The study emphasizes the need for updated monitoring of F. tularensis due to rapid environmental changes affecting wildlife in the region.
View Article and Find Full Text PDF

Spatiotemporal variation in forage is a primary driver of ungulate behavior, yet little is known about the nutritional components they select, and how selection varies across the growing season with changes in forage quality and quantity. We addressed these uncertainties in barren-ground caribou (), which experience their most important foraging opportunities during the short Arctic summer. Recent declines in Arctic caribou populations have raised concerns about the influence of climate change on summer foraging opportunities, given shifting vegetation conditions and insect harassment, and their potential effects on caribou body condition and demography.

View Article and Find Full Text PDF

Background: Muskoxen are a key species of Arctic ecosystems and are important for food security and socio-economic well-being of many Indigenous communities in the Arctic and Subarctic. Between 2009 and 2014, the bacterium Erysipelothrix rhusiopathiae was isolated for the first time in this species in association with multiple mortality events in Canada and Alaska, raising questions regarding the spatiotemporal occurrence of the pathogen and its potential impact on muskox populations.

Materials And Methods: We adapted a commercial porcine E.

View Article and Find Full Text PDF

Effector CD8 T cells are important mediators of adaptive immunity, and receptor-ligand interactions that regulate their survival may have therapeutic potential. Here, we identified a subset of effector CD8 T cells that expressed the inhibitory fragment crystallizable (Fc) receptor FcγRIIB following activation and multiple rounds of division. CD8 T cell-intrinsic genetic deletion of Fcgr2b increased CD8 effector T cell accumulation, resulting in accelerated graft rejection and decreased tumor volume in mouse models.

View Article and Find Full Text PDF

Influenza A viruses (IAVs) are maintained in wild waterbirds and have the potential to infect a broad range of species, including wild mammals. The Arctic Coastal Plain of Alaska supports a diverse suite of species, including waterfowl that are common hosts of IAVs. Mammals co-occur with geese and other migratory waterbirds during the summer breeding season, providing a plausible mechanism for interclass transmission of IAVs.

View Article and Find Full Text PDF

T cell co-signaling molecules play an important role in fine-tuning the strength of T cell activation during many types of immune responses, including infection, cancer, transplant rejection, and autoimmunity. Over the last few decades, intense research into these cosignaling molecules has provided rich evidence to suggest that cosignaling molecules may be harnessed for the treatment of immune-related diseases. In particular, coinhibitory molecules such as programmed-death 1, 2B4, BTLA, TIGIT, LAG-3, TIM-3, and CTLA-4 inhibit T cell responses by counteracting TCR and costimulatory signals, leading to the inhibition of proliferation and effector function and the downregulation of activation and adhesion molecules at the cell surface.

View Article and Find Full Text PDF

Climate-induced shifts in plant phenology may adversely affect animals that cannot or do not shift the timing of their reproductive cycle. The realized effect of potential trophic "mismatches" between a consumer and its food varies with the degree to which species rely on dietary income and stored capital. Large Arctic herbivores rely heavily on maternal capital to reproduce and give birth near the onset of the growing season but are they vulnerable to trophic mismatch? We evaluated the long-term changes in the temperatures and characteristics of the growing seasons (1970-2013), and compared growing conditions and dynamics of forage quality for caribou at peak parturition, peak lactation, and peak forage biomass, and plant senescence between two distinct time periods over 36 years (1977 and 2011-13).

View Article and Find Full Text PDF

Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife.

View Article and Find Full Text PDF

Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is important to consider explicit assumptions and spatial scales of measurement.

View Article and Find Full Text PDF

Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas) extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a.

View Article and Find Full Text PDF

Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed.

View Article and Find Full Text PDF

Winter severity can influence large herbivore populations through a reduction in maternal proteins available for reproduction. Nitrogen (N) isotopes in blood fractions can be used to track the use of body proteins in northern and montane ungulates. We studied 113 adult female caribou for 13 years throughout a series of severe winters that reduced population size and offspring mass.

View Article and Find Full Text PDF

Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems.

View Article and Find Full Text PDF

Wolves (Canis lupus) in North America are considered obligate predators of ungulates with other food resources playing little role in wolf population dynamics or wolf prey relations. However, spawning Pacific salmon (Oncorhyncus spp.) are common throughout wolf range in northwestern North America and may provide a marine subsidy affecting inland wolf-ungulate food webs far from the coast.

View Article and Find Full Text PDF

The fundamental niche of a species is rarely if ever realized because the presence of other species restricts it to a narrower range of ecological conditions. The effects of this narrower range of conditions define how resources are partitioned. Resource partitioning has been inferred but not demonstrated previously for sympatric ursids.

View Article and Find Full Text PDF

Caribou are an integral component of high-latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory.

View Article and Find Full Text PDF