Despite significant advancements in rare genetic disease diagnostics, many patients with rare genetic disease remain without a molecular diagnosis. Novel tools and methods are needed to improve the detection of disease-associated variants and understand the genetic basis of many rare diseases. Long-read genome sequencing provides improved sequencing in highly repetitive, homologous, and low-complexity regions, and improved assessment of structural variation and complex genomic rearrangements compared to short-read genome sequencing.
View Article and Find Full Text PDFPurpose: To evaluate the diagnostic utility of publicly funded clinical exome sequencing (ES) for patients with suspected rare genetic diseases.
Methods: We prospectively enrolled 297 probands who met eligibility criteria and received ES across 5 sites in Ontario, Canada, and extracted data from medical records and clinician surveys. Using the Fryback and Thornbury Efficacy Framework, we assessed diagnostic accuracy by examining laboratory interpretation of results and assessed diagnostic thinking by examining the clinical interpretation of results and whether clinical-molecular diagnoses would have been achieved via alternative hypothetical molecular tests.
The usage of preprint servers in ecology and evolution is increasing, allowing research to be rapidly disseminated and available through open access at no cost. Early Career Researchers (ECRs) often have limited experience with the peer review process, which can be challenging when trying to build publication records and demonstrate research ability for funding opportunities, scholarships, grants, or faculty positions. ECRs face different challenges relative to researchers with permanent positions and established research programs.
View Article and Find Full Text PDF