Publications by authors named "Layla Hosseini-Gerami"

Drug-induced liver injury (DILI) has been a significant challenge in drug discovery, often leading to clinical trial failures and necessitating drug withdrawals. Over the last decade, the existing suite of proxy-DILI assays has generally improved at identifying compounds with hepatotoxicity. However, there is considerable interest in enhancing the prediction of DILI because it allows for evaluating large sets of compounds more quickly and cost-effectively, particularly in the early stages of projects.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) has been significant challenge in drug discovery, often leading to clinical trial failures and necessitating drug withdrawals. The existing suite of in vitro proxy-DILI assays is generally effective at identifying compounds with hepatotoxicity. However, there is considerable interest in enhancing in silico prediction of DILI because it allows for the evaluation of large sets of compounds more quickly and cost-effectively, particularly in the early stages of projects.

View Article and Find Full Text PDF
Article Synopsis
  • Drug-induced cardiotoxicity (DICT) is a significant issue in drug development, leading to 10-14% of drug withdrawals after market release.
  • This study utilized the DICTrank data set from the FDA to assess how well different types of chemical and biological data can predict DICT, finding that information on protein targets and physicochemical properties were particularly effective.
  • The research suggests that integrating omics data in the future could enhance prediction accuracy and improve understanding of the mechanisms behind cardiotoxicity, ultimately contributing to safer drug development.
View Article and Find Full Text PDF

Drug-induced cardiotoxicity (DICT) is a major concern in drug development, accounting for 10-14% of postmarket withdrawals. In this study, we explored the capabilities of various chemical and biological data to predict cardiotoxicity, using the recently released Drug-Induced Cardiotoxicity Rank (DICTrank) dataset from the United States FDA. We analyzed a diverse set of data sources, including physicochemical properties, annotated mechanisms of action (MOA), Cell Painting, Gene Expression, and more, to identify indications of cardiotoxicity.

View Article and Find Full Text PDF

Background: Understanding the Mechanism of Action (MoA) of a compound is an often challenging but equally crucial aspect of drug discovery that can help improve both its efficacy and safety. Computational methods to aid MoA elucidation usually either aim to predict direct drug targets, or attempt to understand modulated downstream pathways or signalling proteins. Such methods usually require extensive coding experience and results are often optimised for further computational processing, making them difficult for wet-lab scientists to perform, interpret and draw hypotheses from.

View Article and Find Full Text PDF

Background: Elucidating compound mechanism of action (MoA) is beneficial to drug discovery, but in practice often represents a significant challenge. Causal Reasoning approaches aim to address this situation by inferring dysregulated signalling proteins using transcriptomics data and biological networks; however, a comprehensive benchmarking of such approaches has not yet been reported. Here we benchmarked four causal reasoning algorithms (SigNet, CausalR, CausalR ScanR and CARNIVAL) with four networks (the smaller Omnipath network vs.

View Article and Find Full Text PDF

Background: A key histopathological hallmark of Alzheimer's disease (AD) is the presence of neurofibrillary tangles of aggregated microtubule-associated protein tau in neurons. Anle138b is a small molecule which has previously shown efficacy in mice in reducing tau aggregates and rescuing AD disease phenotypes.

Methods: In this work, we employed bioinformatics analysis-including pathway enrichment and causal reasoning-of an in vitro tauopathy model.

View Article and Find Full Text PDF

Uncontrolled angiogenesis is a common denominator underlying many deadly and debilitating diseases such as myocardial infarction, chronic wounds, cancer, and age-related macular degeneration. As the current range of FDA-approved angiogenesis-based medicines are far from meeting clinical demands, the vast reserve of natural products from traditional Chinese medicine (TCM) offers an alternative source for developing pro-angiogenic or anti-angiogenic modulators. Here, we investigated 100 traditional Chinese medicine-derived individual metabolites which had reported gene expression in MCF7 cell lines in the Gene Expression Omnibus (GSE85871).

View Article and Find Full Text PDF

The elucidation of a compound's Mechanism of Action (MoA) is a challenging task in the drug discovery process, but it is important in order to rationalise phenotypic findings and to anticipate potential side-effects. Bioinformatic approaches, advances in machine learning techniques and the increasing deposition of high-throughput data in public databases have significantly contributed to recent advances in the field, but it is not straightforward to decide which data and methods are most suitable to use in a given case. In this review, we focus on these methods and data and their applications in generating MoA hypotheses for subsequent experimental validation.

View Article and Find Full Text PDF

The acid dissociation constant (p) has an important influence on molecular properties crucial to compound development in synthesis, formulation, and optimization of absorption, distribution, metabolism, and excretion properties. We will present a method that combines quantum mechanical calculations, at a semi-empirical level of theory, with machine learning to accurately predict p for a diverse range of mono- and polyprotic compounds. The resulting model has been tested on two external data sets, one specifically used to test p prediction methods (SAMPL6) and the second covering known drugs containing basic functionalities.

View Article and Find Full Text PDF