Accumulation of human wild-type (wt) α-synuclein (α-syn) induces neurodegeneration in humans and in experimental rodent models of Parkinson disease (PD). It also leads to endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). We overexpressed glucose regulated protein 78, also known as BiP (GRP78/BiP), to test the hypothesis that this ER chaperone modulates the UPR, blocks apoptosis, and promotes the survival of nigral dopamine (DA) neurons in a rat model of PD induced by elevated level of human α-syn.
View Article and Find Full Text PDFWe present genetic evidence that an in vivo role of α-synuclein (α-syn) is to inhibit phospholipase D2 (PLD2), an enzyme that is believed to participate in vesicle trafficking, membrane signaling, and both endo- and exocytosis. Overexpression of PLD2 in rat substantia nigra pars compacta (SNc) caused severe neurodegeneration of dopamine (DA) neurons, loss of striatal DA, and an associated ipsilateral amphetamine-induced rotational asymmetry. Coexpression of human wild type α-syn suppressed PLD2 neurodegeneration, DA loss, and amphetamine-induced rotational asymmetry.
View Article and Find Full Text PDFTwo small-interfering RNAs (siRNAs) targeting alpha-synuclein (alpha-syn) and three control siRNAs were cloned in an adeno-associated virus (AAV) vector and unilaterally injected into rat substantia nigra pars compacta (SNc). Reduction of alpha-syn resulted in a rapid (4 week) reduction in the number of tyrosine hydroxylase (TH) positive cells and striatal dopamine (DA) on the injected side. The level of neurodegeneration induced by the different siRNAs correlated with their ability to downregulate alpha-syn protein and mRNA in tissue culture and in vivo.
View Article and Find Full Text PDFGlial cell line-derived neurotrophic factor (GDNF) gene transfer is being developed as a treatment for Parkinson's disease (PD). Due to the potential for side effects, external transgene regulation should enhance this strategy's safety profile. Here, we demonstrate dynamic control during long-term expression of GDNF using a recombinant adeno-associated virus (rAAV)-based bicistronic tetracycline (tet)-off construct.
View Article and Find Full Text PDFIntraventricular administration of glial cell line-derived neurotrophic factor (GDNF) in primate and humans to study Parkinson's disease (PD) has revealed the potential for GDNF to induce weight loss. Our previous data indicate that bilateral continuous hypothalamic GDNF overexpression via recombinant adeno-associated virus (rAAV) results in significant failure to gain weight in young rats and weight loss in aged rats. Based on these previous results, we hypothesized that because the nigrostriatal tract passes through the lateral hypothalamus, motor hyperactivity mediated by nigrostriatal dopamine (DA) may have been responsible for the previously observed effect on body weight.
View Article and Find Full Text PDFStudies have shown that alpha-synuclein (alpha-syn) deposited in Lewy bodies in brain tissue from patients with Parkinson disease (PD) is extensively phosphorylated at Ser-129. We used recombinant Adeno-associated virus (rAAV) to overexpress human wild-type (wt) alpha-syn and two human alpha-syn mutants with site-directed replacement of Ser-129 to alanine (S129A) or to aspartate (S129D) in the nigrostriatal tract of the rat to investigate the effect of Ser-129 phosphorylation state on dopaminergic neuron pathology. Rats were injected with rAAV2/5 vectors in the substantia nigra pars compacta (SNc) on one side of the brain; the other side remained as a nontransduced control.
View Article and Find Full Text PDFWe hypothesized that over-expressing the E3 ligase, parkin, whose functional loss leads to Parkinson's disease, in the nigrostriatal tract might be protective in the unilateral 6-hydroxydopamine (6-OHDA) rat lesion model. Recombinant adeno-associated virus (rAAV) encoding human parkin or green fluorescent protein (GFP) was injected into the rat substantia nigra 6 weeks prior to a four-site striatal 6-OHDA lesion. Vector-mediated parkin over-expression significantly ameliorated motor deficits as measured by amphetamine-induced rotational behavior and spontaneous behavior in the cylinder test but forelimb akinesia as assessed by the stepping test was unaffected.
View Article and Find Full Text PDF