Publications by authors named "Layla Amiri"

Our recent studies have demonstrated that aspirin treatment prevents inflammatory and oxidative stress-induced alterations in mitochondrial function, improves glucose tolerance and pancreatic endocrine function and preserves tissue-specific glutathione (GSH)-dependent redox homeostasis in Goto-Kakizaki (GK) diabetic rats. In the current study, we have investigated the mechanism of action of aspirin in maintaining mitochondrial bioenergetics and redox metabolism in the liver and kidneys of GK rats. Aspirin reduced the production of reactive oxygen species (ROS) and oxidative stress-induced changes in GSH metabolism.

View Article and Find Full Text PDF

Our previous study in Goto-Kakizaki (GK) type 2 diabetic rats provided significant evidence that aspirin treatment improves pancreatic β-cell function by reducing inflammatory responses and improving glucose tolerance. In the present study, we aimed to elucidate the mechanism of action of aspirin on the pathophysiology and progression of type 2 diabetic complications in the heart and pancreas of insulin-resistant GK rats. Aspirin treatment demonstrated a reduction in mitochondrial reactive oxygen species (ROS) production and lipid peroxidation, accompanied by improved redox homeostasis.

View Article and Find Full Text PDF

Background/aim: Type 2 diabetes is the most common metabolic disorder, characterized by insulin resistance and pancreatic islet beta-cell failure. The most common complications associated with type 2 diabetes are hyperinsulinemia, hyperglycemia, hyperlipidemia, increased inflammatory and reduced insulin response. Aspirin (ASA) and other non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with the prevention of diabetes, obesity and related cardiovascular disorders.

View Article and Find Full Text PDF