Publications by authors named "Laying Wu"

Aluminum-based water treatment residual (WTR)-coated wood mulches were synthesized and tested for removal of heavy metals and phosphorus (P) in synthetic urban stormwater. WTRs are an industrial waste produced from coagulation in water treatment facilities, primarily composed of amorphous aluminum or iron hydroxides. Batch tests showed that the composite filter media could effectively adsorb 97% lead (Pb), 76% zinc (Zn), 81% copper (Cu) and 97% P from the synthetic stormwater (Pb = 100 μg/L, Zn = 800 μg/L, Cu = 100 μg/L, P = 2.

View Article and Find Full Text PDF

A simple and robust protocol to maintain the structural feature of polymer-protein core-shell nanoparticles (PPCS-NPs) is developed based on the synergistic interactions between proteins and functional polymers. Using the self-assembly method, a broad range of proteins can be assembled to the selective water-insoluble polymers containing pyridine groups. The detailed analysis of the PPCS-NPs structure was conducted using FESEM and thin-sectioned TEM.

View Article and Find Full Text PDF

The ability of Tobacco mosaic virus (TMV) to tolerate various amino acid insertions near its carboxy terminus is well-known. Typically these inserts are based on antigenic sequences for vaccine development with plant viruses as carriers. However, we determined that the structural symmetries and the size range of the viruses could also be modeled to mimic the extracellular matrix proteins by inserting cell-binding sequences to the virus coat protein.

View Article and Find Full Text PDF

In this work we created electrospun fibrous scaffolds with random and aligned fiber orientations in order to mimic the three-dimensional structure of the natural extracellular matrix (ECM). The rigidity and topography of the ECM environment have been reported to alter cancer cell behavior. However, the complexity of the in vivo system makes it difficult to isolate and study such extracellular topographical cues that trigger cancer cells' response.

View Article and Find Full Text PDF

Topographical features ranging from micro- to nanometers can affect cell orientation and migratory pathways, which are important factors in tissue engineering and tumor migration. In our previous study, a convective assembly of bacteriophage M13 resulted in thin films which could be used to control the alignment of cells. However, several questions regarding its underlying reasons to dictate cell alignment remained unanswered.

View Article and Find Full Text PDF

In this study, we synthesized empty core-shell structured nanocapsules of Pluronic F127 and chitosan and characterized the thermal responsiveness of the nanocapsules in size and wall-permeability. Moreover, we determined the feasibility of using the nanocapsules to encapsulate small molecules for temperature-controlled release and intracellular delivery. The nanocapsules are ∼37 nm at 37 °C and expand to ∼240 nm when cooled to 4 °C in aqueous solutions, exhibiting >200 times change in volume.

View Article and Find Full Text PDF

Self-assembly of poly(4-vinylpyridine) (P4VP) and ferritin produced a spherical core-shell structure, which was analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In particular, for better understanding, the organization of such core-shell nanostructures, an optimal protocol for preparation of TEM thin sectioning of ferritin-P4VP composites, was developed. It entails fixing the ferritin-P4VP complex with 2.

View Article and Find Full Text PDF

The "amyloid cascade hypothesis," linking self-assembly of the amyloid-beta protein (Abeta) to the pathogenesis of Alzheimer's disease, has led to the emergence of inhibition of Abeta self-assembly as a prime therapeutic strategy for this currently unpreventable and devastating disease. The complexity of Abeta self-assembly, which involves multiple reaction intermediates related by nonlinear and interconnected nucleation and growth mechanisms, provides multiple points for inhibitor intervention. Although a number of small-molecule inhibitors of Abeta self-assembly have been identified, little insight has been garnered concerning the point at which these inhibitors intervene within the Abeta assembly process.

View Article and Find Full Text PDF

A practical method to assemble rodlike tobacco mosaic virus and bateriophage M13 with polymers was developed, which afforded a 3D core-shell composite with morphological control.

View Article and Find Full Text PDF