Rare diseases affect 1-in-10 people in the United States and despite increased genetic testing, up to half never receive a diagnosis. Even when using advanced genome sequencing platforms to discover variants, if there is no connection between the variants found in the patient's genome and their phenotypes in the literature, then the patient will remain undiagnosed. When a direct variant-phenotype connection is not known, putting a patient's information in the larger context of phenotype relationships and protein-protein interactions may provide an opportunity to find an indirect explanation.
View Article and Find Full Text PDFMany patients do not experience optimal benefits from medical advances because clinical research does not adequately represent them. While the diversity of biomedical research cohorts is improving, ensuring that individual patients are adequately represented remains challenging. We propose a new approach, GenoSiS, which leverages machine learning-based similarity search to dynamically find patient-matched cohorts across different populations quickly.
View Article and Find Full Text PDFInsulinomas are rare neuroendocrine tumors arising from pancreatic β cells, characterized by aberrant proliferation and altered insulin secretion, leading to glucose homeostasis failure. With the aim of uncovering the role of noncoding regulatory regions and their aberrations in the development of these tumors, we coupled epigenetic and transcriptome profiling with whole-genome sequencing. As a result, we unraveled somatic mutations associated with changes in regulatory functions.
View Article and Find Full Text PDFUnlabelled: There is an unmet need to improve the efficacy of platinum-based cancer chemotherapy, which is used in primary and metastatic settings in many cancer types. In bladder cancer, platinum-based chemotherapy leads to better outcomes in a subset of patients when used in the neoadjuvant setting or in combination with immunotherapy for advanced disease. Despite such promising results, extending the benefits of platinum drugs to a greater number of patients is highly desirable.
View Article and Find Full Text PDFComprehensive characterization of structural variation in natural populations has only become feasible in the last decade. To investigate the population genomic nature of structural variation, reproducible and high-confidence structural variation callsets are first required. We created a population-scale reference of the genome-wide landscape of structural variation across 33 Nordic house sparrows (Passer domesticus).
View Article and Find Full Text PDFMany nocturnally active fireflies use precisely timed bioluminescent patterns to identify mates, making them especially vulnerable to light pollution. As urbanization continues to brighten the night sky, firefly populations are under constant stress, and close to half of the species are now threatened. Ensuring the survival of firefly biodiversity depends on a large-scale conservation effort to monitor and protect thousands of populations.
View Article and Find Full Text PDFStructural variants are associated with cancers and developmental disorders, but challenges with estimating population frequency remain a barrier to prioritizing mutations over inherited variants. In particular, variability in variant calling heuristics and filtering limits the use of current structural variant catalogs. We present STIX, a method that, instead of relying on variant calls, indexes and searches the raw alignments from thousands of samples to enable more comprehensive allele frequency estimation.
View Article and Find Full Text PDFCompared to its predecessors, the Telomere-to-Telomere CHM13 genome adds nearly 200 million base pairs of sequence, corrects thousands of structural errors, and unlocks the most complex regions of the human genome for clinical and functional study. We show how this reference universally improves read mapping and variant calling for 3202 and 17 globally diverse samples sequenced with short and long reads, respectively. We identify hundreds of thousands of variants per sample in previously unresolved regions, showcasing the promise of the T2T-CHM13 reference for evolutionary and biomedical discovery.
View Article and Find Full Text PDFIdentification of rare-variant associations is crucial to full characterization of the genetic architecture of complex traits and diseases. Essential in this process is the evaluation of novel methods in simulated data that mirror the distribution of rare variants and haplotype structure in real data. Additionally, importing real-variant annotation enables in silico comparison of methods, such as rare-variant association tests and polygenic scoring methods, that focus on putative causal variants.
View Article and Find Full Text PDFVisual validation is an important step to minimize false-positive predictions from structural variant (SV) detection. We present Samplot, a tool for creating images that display the read depth and sequence alignments necessary to adjudicate purported SVs across samples and sequencing technologies. These images can be rapidly reviewed to curate large SV call sets.
View Article and Find Full Text PDFGenomic structural variants (SVs) are a major source of genetic and phenotypic variation but have not been investigated systematically in rainbow trout (), an important aquaculture species of cold freshwater. The objectives of this study were 1) to identify and validate high-confidence SVs in rainbow trout using whole-genome re-sequencing; and 2) to examine the contribution of transposable elements (TEs) to SVs in rainbow trout. A total of 96 rainbow trout, including 11 homozygous lines and 85 outbred fish from three breeding populations, were whole-genome sequenced with an average genome coverage of 17.
View Article and Find Full Text PDFStructural variants (SVs) are a major source of genetic and phenotypic variation, but remain challenging to accurately type and are hence poorly characterized in most species. We present an approach for reliable SV discovery in non-model species using whole genome sequencing and report 15,483 high-confidence SVs in 492 Atlantic salmon (Salmo salar L.) sampled from a broad phylogeographic distribution.
View Article and Find Full Text PDFThe human genome encodes an order of magnitude more gene expression enhancers than promoters, suggesting that most genes are regulated by the combined action of multiple enhancers. We have previously shown that neighboring estrogen-responsive enhancers exhibit complex synergistic contributions to the production of an estrogenic transcriptional response. Here we sought to determine the molecular underpinnings of this enhancer cooperativity.
View Article and Find Full Text PDFA key goal of whole-genome sequencing for studies of human genetics is to interrogate all forms of variation, including single-nucleotide variants, small insertion or deletion (indel) variants and structural variants. However, tools and resources for the study of structural variants have lagged behind those for smaller variants. Here we used a scalable pipeline to map and characterize structural variants in 17,795 deeply sequenced human genomes.
View Article and Find Full Text PDFSummary: Genotype Query Tools (GQT) were developed to discover disease-causing variations from billions of genotypes and millions of genomes, processes data at substantially higher speed over other existing methods. While GQT has been available to a wide audience as command-line software, the difficulty of constructing queries among non-IT or non-bioinformatics researchers has limited its applicability. To overcome this limitation, we developed webGQT, an easy-to-use tool with a graphical user interface.
View Article and Find Full Text PDFSummary: Large-scale human genetics studies are now employing whole genome sequencing with the goal of conducting comprehensive trait mapping analyses of all forms of genome variation. However, methods for structural variation (SV) analysis have lagged far behind those for smaller scale variants, and there is an urgent need to develop more efficient tools that scale to the size of human populations. Here, we present a fast and highly scalable software toolkit (svtools) and cloud-based pipeline for assembling high quality SV maps-including deletions, duplications, mobile element insertions, inversions and other rearrangements-in many thousands of human genomes.
View Article and Find Full Text PDFDeep catalogs of genetic variation from thousands of humans enable the detection of intraspecies constraint by identifying coding regions with a scarcity of variation. While existing techniques summarize constraint for entire genes, single gene-wide metrics conceal regional constraint variability within each gene. Therefore, we have created a detailed map of constrained coding regions (CCRs) by leveraging variation observed among 123,136 humans from the Genome Aggregation Database.
View Article and Find Full Text PDFSevere spinal cord injury leads to hemorrhage, edema and elevated tissue pressures that propagate ischemia. Liquefactive necrosis of damaged tissue eventually results in chronic cavities due to a wound healing process lacking adhesive contractile cells. Biomaterials can potently influence wound healing responses.
View Article and Find Full Text PDFBackground: Immature neurons can extend processes after transplantation in adult animals. Neuronal relays can form between injected neural stem cells (NSCs) and surviving neurons, possibly improving recovery after spinal cord injury (SCI). Cell delivery methods of single or multiple bolus injections of concentrated cell suspensions thus far tested in preclinical and clinical experiments are suboptimal for new tract formation.
View Article and Find Full Text PDFEarly infantile epileptic encephalopathy (EIEE) is a devastating epilepsy syndrome with onset in the first months of life. Although mutations in more than 50 different genes are known to cause EIEE, current diagnostic yields with gene panel tests or whole-exome sequencing are below 60%. We applied whole-genome analysis (WGA) consisting of whole-genome sequencing and comprehensive variant discovery approaches to a cohort of 14 EIEE subjects for whom prior genetic tests had not yielded a diagnosis.
View Article and Find Full Text PDFFunctional genomics assays produce sets of genomic regions as one of their main outputs. To biologically interpret such region-sets, researchers often use colocalization analysis, where the statistical significance of colocalization (overlap, spatial proximity) between two or more region-sets is tested. Existing colocalization analysis tools vary in the statistical methodology and analysis approaches, thus potentially providing different conclusions for the same research question.
View Article and Find Full Text PDFSV-plaudit is a framework for rapidly curating structural variant (SV) predictions. For each SV, we generate an image that visualizes the coverage and alignment signals from a set of samples. Images are uploaded to our cloud framework where users assess the quality of each image using a client-side web application.
View Article and Find Full Text PDFGenomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories.
View Article and Find Full Text PDF