Age-related deterioration of condylar cartilage is an etiological factor in temporomandibular joint-osteoarthritis (TMJ-OA). However, its underlying mechanism remains unknown. Therefore, we examined age-related changes and the relationship between mTOR signaling and primary cilia in condylar cartilage to determine the intrinsic mechanisms of age-related TMJ-OA.
View Article and Find Full Text PDFThe cementum is a highly mineralized tissue that covers the tooth root. The regional differences among the types of cementum, especially in the extrinsic fibers that contribute to tooth support, remain controversial. Therefore, this study used second harmonic generation imaging in conjunction with automated collagen extraction and image analysis algorithms to facilitate the quantitative examination of the fiber characteristics and the changes occurring in these fibers over time.
View Article and Find Full Text PDFA comprehensive understanding of the extracellular matrix (ECM) is essential for developing biomimetic ECM scaffolds for tissue regeneration. As the periodontal ligament cell (PDLC)-derived ECM has shown potential for periodontal tissue regeneration, it is vital to gain a deeper understanding of its comprehensive profile. Although the PDLC-derived ECM exhibits extracellular environment similar to that of periodontal ligament (PDL) tissue, details of its molecular composition are lacking.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2024
The periodontal ligament (PDL) is a critical component in maintaining tooth stability. It is composed of cells and an extracellular matrix (ECM), each with unique roles in tissue function and homeostasis. Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, plays a crucial role in regulating ECM assembly and turnover, alongside facilitating cellular-ECM interactions.
View Article and Find Full Text PDFRab GTPases, the largest group of small monomeric GTPases, have been shown to participate in membrane trafficking involving many cellular processes. However, their roles during osteoblastic differentiation remain to be elucidated. In this study, we investigated Rab GTPase involvement in osteoblastic differentiation.
View Article and Find Full Text PDFThe periodontal ligament (PDL) is a specialized connective tissue that provides structural support to the tooth and is crucial for oral functions. The mechanical properties of the PDL are mainly derived from the tissue-specific composition and structural characteristics of the extracellular matrix (ECM). The ECM also plays key roles in determining cell fate in the cellular microenvironment thus crucial in the PDL tissue homeostasis.
View Article and Find Full Text PDFPeriodontal ligament (PDL) is a uniquely differentiated tissue that anchors the tooth to the alveolar bone socket and plays key roles in oral function. PDL cells can respond rapidly to mechanical stimuli, resulting in accelerated tissue remodeling. Cell proliferation is an initial event in tissue remodeling and participates in maintaining the cell supply; therefore, analyzing cell-proliferative activity might provide a comprehensive view of cellular dynamics at the tissue level.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2020
Osteoclast and osteoblast are essential for proper bone development and remodeling as well as recovery of bone fracture. In this study, we seek chemical compounds that enhance turnover of bone metabolism for promoting bone healing. First, we screen a chemical library which includes 378 compounds by using murine pre-osteoclastic RAW264.
View Article and Find Full Text PDF