Publications by authors named "Lay Teng Ang"

Blood vessels permeate all organs and execute myriad roles in health and disease. Here, we present a protocol to efficiently generate human artery and vein endothelial cells (ECs) from pluripotent stem cells within 3-4 days of differentiation. We delineate how to seed human pluripotent stem cells and sequentially differentiate them into primitive streak, lateral mesoderm, and either artery or vein ECs.

View Article and Find Full Text PDF

Subclinical vascular impairment can be exacerbated in individuals who experience sustained inflammation after COVID-19 infection. Our study explores the prevalence and impact of autoantibodies on vascular dysfunction in healthy COVID-19 survivors, an area that remains inadequately investigated. Focusing on autoantibodies against the atypical chemokine receptor 1 (ACKR1), COVID-19 survivors demonstrated significantly elevated anti-ACKR1 autoantibodies, correlating with systemic cytokines, circulating damaged endothelial cells, and endothelial dysfunction.

View Article and Find Full Text PDF

The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.

View Article and Find Full Text PDF

Generating primordial germ cell-like cells (PGCLCs) from human pluripotent stem cells (hPSCs) advances studies of human reproduction and development of infertility treatments, but often entails complex 3D aggregates. Here we develop a simplified, monolayer method to differentiate hPSCs into PGCs within 3.5 days.

View Article and Find Full Text PDF

Owing to their manifold roles in health and disease, there have been intense efforts to synthetically generate blood vessels in vitro from human pluripotent stem cells (hPSCs). However, there are multiple types of blood vessel, including arteries and veins, which are molecularly and functionally different. How can we specifically generate either arterial or venous endothelial cells (ECs) from hPSCs in vitro? Here, we summarize how arterial or venous ECs arise during embryonic development.

View Article and Find Full Text PDF

Neisseria meningitidis protects itself from complement-mediated killing by binding complement factor H (FH). Previous studies associated susceptibility to meningococcal disease (MD) with variation in CFH, but the causal variants and underlying mechanism remained unknown. Here we attempted to define the association more accurately by sequencing the CFH-CFHR locus and imputing missing genotypes in previously obtained GWAS datasets of MD-affected individuals of European ancestry and matched controls.

View Article and Find Full Text PDF

Stem cell research endeavors to generate specific subtypes of classically defined "cell types." Here, we generate >90% pure human artery or vein endothelial cells from pluripotent stem cells within 3-4 days. We specified artery cells by inhibiting vein-specifying signals and vice versa.

View Article and Find Full Text PDF

Epithelial cells in the liver (known as hepatocytes) are high-performance engines of myriad metabolic functions and versatile responders to liver injury. As hepatocytes metabolize amino acids, alcohol, drugs, and other substrates, they produce and are exposed to a milieu of toxins and harmful byproducts that can damage themselves. In the healthy liver, hepatocytes generally divide slowly.

View Article and Find Full Text PDF

Too many choices can be problematic. This is certainly the case for human pluripotent stem cells (hPSCs): they harbor the potential to differentiate into hundreds of cell types; yet it is highly challenging to exclusively differentiate hPSCs into a single desired cell type. This review focuses on unresolved and fundamental questions regarding hPSC differentiation and critiquing the identity and purity of the resultant cell populations.

View Article and Find Full Text PDF

The liver detoxifies harmful substances, secretes vital proteins, and executes key metabolic activities, thus sustaining life. Consequently, liver failure-which can be caused by chronic alcohol intake, hepatitis, acute poisoning, or other insults-is a severe condition that can culminate in bleeding, jaundice, coma, and eventually death. However, approaches to treat liver failure, as well as studies of liver function and disease, have been stymied in part by the lack of a plentiful supply of human liver cells.

View Article and Find Full Text PDF

How are closely related lineages, including liver, pancreas, and intestines, diversified from a common endodermal origin? Here, we apply principles learned from developmental biology to rapidly reconstitute liver progenitors from human pluripotent stem cells (hPSCs). Mapping the formation of multiple endodermal lineages revealed how alternate endodermal fates (e.g.

View Article and Find Full Text PDF

Multiple adult tissues are maintained by stem cells of restricted developmental potential which can only form a subset of lineages within the tissue. For instance, the two adult lung epithelial compartments (airways and alveoli) are separately maintained by distinct lineage-restricted stem cells. A challenge has been to obtain multipotent stem cells and/or progenitors that can generate all epithelial cell types of a given tissue.

View Article and Find Full Text PDF

Liver diseases afflict millions of patients worldwide. Currently, the only long-term treatment for liver failure is the transplantation of a new liver. However, intravenously transplanting a suspension of human hepatocytes might be a less-invasive approach to partially reconstitute lost liver functions in human patients as evinced by promising outcomes in clinical trials.

View Article and Find Full Text PDF

Mesoderm is the developmental precursor to myriad human tissues including bone, heart, and skeletal muscle. Unravelling the molecular events through which these lineages become diversified from one another is integral to developmental biology and understanding changes in cellular fate. To this end, we developed an in vitro system to differentiate human pluripotent stem cells through primitive streak intermediates into paraxial mesoderm and its derivatives (somites, sclerotome, dermomyotome) and separately, into lateral mesoderm and its derivatives (cardiac mesoderm).

View Article and Find Full Text PDF

Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart.

View Article and Find Full Text PDF

Pluripotent cells in embryos are situated near the apex of the hierarchy of developmental potential. They are capable of generating all cell types of the mammalian body proper. Therefore, they are the exemplar of stem cells.

View Article and Find Full Text PDF

Human pluripotent stem cell (hPSC) differentiation typically yields heterogeneous populations. Knowledge of signals controlling embryonic lineage bifurcations could efficiently yield desired cell types through exclusion of alternate fates. Therefore, we revisited signals driving induction and anterior-posterior patterning of definitive endoderm to generate a coherent roadmap for endoderm differentiation.

View Article and Find Full Text PDF

The high frequency of rhinovirus (RV) infection and the lack of an effective treatment, underline the importance of research on novel anti-rhinoviral agents. The present study investigated the effects of des-aspartate-angiotensin I (DAA-I) on the survival of RV14-infected H1HeLa cells; and the early inflammatory processes in RV14-infected A549 lung epithelial cells. The study rationale was based on earlier findings showing that DAA-I is an effective anti-inflammatory agent, and that symptoms and severity of rhinoviral infection are related to the underling inflammation.

View Article and Find Full Text PDF

Nodal and Activin are morphogens of the TGFbeta superfamily of signaling molecules that direct differential cell fate decisions in a dose- and distance-dependent manner. During early embryonic development the Nodal/Activin pathway is responsible for the specification of mesoderm, endoderm, node, and mesendoderm. In contradiction to this drive towards cellular differentiation, the pathway also plays important roles in the maintenance of self-renewal and pluripotency in embryonic and epiblast stem cells.

View Article and Find Full Text PDF

Understanding the molecular mechanisms controlling early cell fate decisions in mammals is a major objective toward the development of robust methods for the differentiation of human pluripotent stem cells into clinically relevant cell types. Here, we used human embryonic stem cells and mouse epiblast stem cells to study specification of definitive endoderm in vitro. Using a combination of whole-genome expression and chromatin immunoprecipitation (ChIP) deep sequencing (ChIP-seq) analyses, we established an hierarchy of transcription factors regulating endoderm specification.

View Article and Find Full Text PDF

Tissue engineering scaffolds should ideally mimic the natural ECM in structure and function. Electrospun nanofibrous scaffolds are easily fabricated and possess a biomimetic nanostructure. Scaffolds can mimic ECM function by acting as a depot for sustained release of growth factors.

View Article and Find Full Text PDF

Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvci1tcni3phh5fpupb0fguuupg4lccob): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once