Background: Three distinct Ca release channels were identified in dog P-cells: the ryanodine receptor subtype 2 (RyR2) was detected throughout the cell, while the ryanodine receptor subtype 3 (RyR3) and inositol phosphate sensitive Ca release channel (InsP3R) were found in the cell periphery. How each of these channels contributes to the Ca cycling of P-cells is unclear. Recent modeling of Ca mobilization in P-cells suggested that Ca sensitivity of Cainduced Carelease (CICR) was larger at the P-cell periphery.
View Article and Find Full Text PDFBackground: Connexin43 (Cx43) is a major connexin that forms gap junction (GJ) channels in the heart and is also present in the cell membrane as unopposed/non-junctional hemichannels and in the inner mitochondrial membrane. By using carbenoxolone (CBX), a blocker of Cx43, the effect of the blockade of Cx43 on Ca(2+)waves and triggered arrhythmias in the myocardium with non-uniform contraction was examined.
Methods And Results: Trabeculae were obtained from rat hearts.
Am J Physiol Heart Circ Physiol
February 2014
Diagnosis of myocardial infarction (MI) is based on ST-segment elevation on electrocardiographic evaluation and/or elevated plasma cardiac troponin (cTn) levels. However, troponins lack the sensitivity required to detect the onset of MI at its earliest stages. Therefore, to confirm its viability as an ultra-early biomarker of MI, this study investigates the release kinetics of cardiac myosin binding protein-C (cMyBP-C) in a porcine model of MI and in two human cohorts.
View Article and Find Full Text PDFDespite strong suspicion that abnormal Ca(2+) handling in Purkinje cells (P-cells) is implicated in life-threatening forms of ventricular tachycardias, the mechanism underlying the Ca(2+) cycling of these cells under normal conditions is still unclear. There is mounting evidence that P-cells have a unique Ca(2+) handling system. Notably complex spontaneous Ca(2+) activity was previously recorded in canine P-cells and was explained by a mechanistic hypothesis involving a triple layered system of Ca(2+) release channels.
View Article and Find Full Text PDF