To identify genetic and environmental factors contributing to the pathogenesis of non-alcoholic fatty liver disease, we examined liver steatosis and related clinical and molecular traits in more than 100 unique inbred mouse strains, which were fed a diet rich in fat and carbohydrates. A >30-fold variation in hepatic TG accumulation was observed among the strains. Genome-wide association studies revealed three loci associated with hepatic TG accumulation.
View Article and Find Full Text PDFAutocrine VEGF is necessary for endothelial survival, although the cellular mechanisms supporting this function are unknown. Here, we show that--even after full differentiation and maturation--continuous expression of VEGF by endothelial cells is needed to sustain vascular integrity and cellular viability. Depletion of VEGF from the endothelium results in mitochondria fragmentation and suppression of glucose metabolism, leading to increased autophagy that contributes to cell death.
View Article and Find Full Text PDFInsulin resistance (IR) is a complex trait with multiple genetic and environmental components. Confounded by large differences between the sexes, environment, and disease pathology, the genetic basis of IR has been difficult to dissect. Here we examine IR and related traits in a diverse population of more than 100 unique male and female inbred mouse strains after feeding a diet rich in fat and refined carbohydrates.
View Article and Find Full Text PDFWe report the engineering and characterization of paraoxonase-3 knockout mice (Pon3KO). The mice were generally healthy but exhibited quantitative alterations in bile acid metabolism and a 37% increased body weight compared to the wild-type mice on a high fat diet. PON3 was enriched in the mitochondria-associated membrane fraction of hepatocytes.
View Article and Find Full Text PDFThe CCAAT/enhancer binding proteins (C/EBPs) are transcription factors involved in hematopoietic cell development and induction of several inflammatory mediators. C/EBPε is expressed only in myeloid cells including monocytes/macrophages. Atherosclerosis is an inflammatory disorder of the vascular wall and circulating immune cells such as monocytes/macrophages.
View Article and Find Full Text PDFObesity is a highly heritable disease driven by complex interactions between genetic and environmental factors. Human genome-wide association studies (GWAS) have identified a number of loci contributing to obesity; however, a major limitation of these studies is the inability to assess environmental interactions common to obesity. Using a systems genetics approach, we measured obesity traits, global gene expression, and gut microbiota composition in response to a high-fat/high-sucrose (HF/HS) diet of more than 100 inbred strains of mice.
View Article and Find Full Text PDFBackground: The human 9p21.3 chromosome locus has been shown to be an independent risk factor for atherosclerosis in multiple large-scale genome-wide association studies, but the underlying mechanism remains unknown. We set out to investigate the potential role of the 9p21.
View Article and Find Full Text PDFEpidemiological studies show that high HDL-cholesterol (HDLc) decreases the risk of cardiovascular disease. To map genes controlling lipid metabolism, particularly HDLc levels, we screened the plasma lipids of 36 AcB/BcA RC mouse strains subjected to either a normal or a high-fat/cholesterol diet. Strains BcA68 and AcB65 showed deviant HDLc plasma levels compared with the parental A/J and C57BL/6J strains; they were thus selected to generate informative F2 crosses.
View Article and Find Full Text PDFThe liver X receptor (LXR) signaling pathway is an important modulator of atherosclerosis, but the relative importance of the two LXRs in atheroprotection is incompletely understood. We show here that LXRα, the dominant LXR isotype expressed in liver, plays a particularly important role in whole-body sterol homeostasis. In the context of the ApoE(-/-) background, deletion of LXRα, but not LXRβ, led to prominent increases in atherosclerosis and peripheral cholesterol accumulation.
View Article and Find Full Text PDFInbred strains of mice are strikingly different in susceptibility to obesity-driven diabetes. For instance, deficiency in leptin receptor (db/db) leads to hyperphagia and obesity in both C57BL/6 and DBA/2 mice, but only on the DBA/2 background do the mice develop beta-cell loss leading to severe diabetes, while C57BL/6 mice are relatively resistant. To further investigate the genetic factors predisposing to diabetes, we have studied leptin receptor-deficient offspring of an F2 cross between C57BL/6J (db/+) males and DBA/2J females.
View Article and Find Full Text PDFWe report a systems genetic analysis of high density lipoprotein (HDL) levels in an F2 intercross between inbred strains CAST/EiJ and C57BL/6J. We previously showed that there are dramatic differences in HDL metabolism in a cross between these strains, and we now report co-expression network analysis of HDL that integrates global expression data from liver and adipose with relevant metabolic traits. Using data from a total of 293 F2 intercross mice, we constructed weighted gene co-expression networks and identified modules (subnetworks) associated with HDL and clinical traits.
View Article and Find Full Text PDFObjective: To test the hypothesis that NF-E2-related factor 2 (Nrf2) expression plays an antiatherogenic role by its vascular antioxidant and anti-inflammatory properties.
Methods And Results: Nrf2 is an important transcription factor that regulates the expression of phase 2 detoxifying enzymes and antioxidant genes. Its expression in vascular cells appears to be an important factor in the protection against vascular oxidative stress and inflammation.
Introduction: The purpose of this study was to evaluate the effects of L-4F, an apolipoprotein A-1 mimetic peptide, alone or with pravastatin, in apoE-/-Fas-/-C57BL/6 mice that spontaneously develop immunoglobulin G (IgG) autoantibodies, glomerulonephritis, osteopenia, and atherosclerotic lesions on a normal chow diet.
Methods: Female mice, starting at eight to nine weeks of age, were treated for 27 weeks with 1) pravastatin, 2) L-4F, 3) L-4F plus pravastatin, or 4) vehicle control, followed by disease phenotype assessment.
Results: In preliminary studies, dysfunctional, proinflammatory high-density lipoproteins (piHDL) were decreased six hours after a single L-4F, but not scrambled L-4F, injection in eight- to nine-week old mice.
Objective: To identify metabolic derangements contributing to diabetes susceptibility in the leptin receptor-deficient obese C57BLKS/J-db/db (BKS-db) mouse strain.
Research Design And Methods: Young BKS-db mice were used to identify metabolic pathways contributing to the development of diabetes. Using the diabetes-resistant B6-db strain as a comparison, in vivo and in vitro approaches were applied to identify metabolic and molecular differences between the two strains.
Systems genetics relies on common genetic variants to elucidate biologic networks contributing to complex disease-related phenotypes. Mice are ideal model organisms for such approaches, but linkage analysis has been only modestly successful due to low mapping resolution. Association analysis in mice has the potential of much better resolution, but it is confounded by population structure and inadequate power to map traits that explain less than 10% of the variance, typical of mouse quantitative trait loci (QTL).
View Article and Find Full Text PDFUpstream transcription factor 1 (USF1) has been associated with familial combined hyperlipidemia, the metabolic syndrome, and related conditions, but the mechanisms involved are unknown. In this study, we report validation of Usf1 as a causal gene of cholesterol homeostasis, insulin sensitivity and body composition in mouse models using several complementary approaches and identify associated pathways and gene expression network modules. Over-expression of human USF1 in both transgenic mice and mice with transient liver-specific over-expression influenced metabolic trait phenotypes, including obesity, total cholesterol level, LDL/VLDL cholesterol and glucose/insulin ratio.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2010
Objective: The risk of atherosclerosis in the setting of chylomicronemia has been a topic of debate. In this study, we examined susceptibility to atherosclerosis in Gpihbp1-deficient mice (Gpihbp1(-/-)), which manifest severe chylomicronemia as a result of defective lipolysis.
Methods And Results: Gpihbp1(-/-) mice on a chow diet have plasma triglyceride and cholesterol levels of 2812+/-209 and 319+/-27 mg/dL, respectively.
Objective: Insulin-resistant states, such as obesity and type 2 diabetes, contribute substantially to accelerated atherogenesis. Null mutations of myostatin (Mstn) are associated with increased muscle mass and decreased fat mass. In this study, we determined whether Mstn disruption could prevent the development of insulin resistance, proatherogenic dyslipidemia, and atherogenesis.
View Article and Find Full Text PDFA principal task in dissecting the genetics of complex traits is to identify causal genes for disease phenotypes. We previously developed a method to infer causal relationships among genes through the integration of DNA variation, gene transcription and phenotypic information. Here we have validated our method through the characterization of transgenic and knockout mouse models of genes predicted to be causal for abdominal obesity.
View Article and Find Full Text PDFSubclinical inflammation is a recently discovered phenomenon in type 2 diabetes. Elevated cytokines impair beta-cell function and survival. A recent clinical trial shows that blocking IL-1beta signaling by IL-1 receptor antagonist (IL-1Ra) improves beta-cell secretory function in patients with type 2 diabetes.
View Article and Find Full Text PDFApolipoprotein AII (apoAII) transgenic (apoAIItg) mice exhibit several traits associated with the insulin resistance (IR) syndrome, including IR, obesity, and a marked hypertriglyceridemia. Because treatment of the apoAIItg mice with rosiglitazone ameliorated the IR and hypertriglyceridemia, we hypothesized that the hypertriglyceridemia was due largely to overproduction of very low density lipoprotein (VLDL) by the liver, a normal response to chronically elevated insulin and glucose. We now report in vivo and in vitro studies that indicate that hepatic fatty acid oxidation was reduced and lipogenesis increased, resulting in a 25% increase in triglyceride secretion in the apoAIItg mice.
View Article and Find Full Text PDFTo establish a mouse model of accelerated atherosclerosis in lupus, we generated apolipoprotein E-deficient (apoE(-/-)) and Fas(lpr/lpr) (Fas(-/-)) C57BL/6 mice. On a normal chow diet, 5 month old apoE(-/-)Fas(-/-) mice had enlarged glomerular tuft areas, severe proteinuria, increased circulating autoantibody levels, and increased apoptotic cells in renal and vascular lesions compared with either single knockout mice. Also, double knockout mice developed increased atherosclerotic lesions but decreased serum levels of total and non-HDL cholesterol compared with apoE(-/-)Fas(+/+) littermates.
View Article and Find Full Text PDFUsing mass spectrometry, we have recently reported on molecular masses of the apolipoproteins associated with porcine and equine HDL. In addition to obtaining accurate masses for the various apolipoproteins, we also were able to detect mass variations due to post-translational modifications. In the present study, we have used these same approaches to characterize the apolipoproteins in two inbred mouse strains, C57BL/6 and BALB/c.
View Article and Find Full Text PDFMyeloperoxidase (MPO) is an oxidant-generating enzyme present in macrophages at atherosclerotic lesions and implicated in coronary artery disease (CAD). Although mouse models are important for investigating the role of MPO in atherosclerosis, neither mouse MPO nor its oxidation products are detected in lesions in murine models. To circumvent this problem, we generated transgenic mice expressing two functionally different human MPO alleles, with either G or A at position -463, and crossed these to the LDL receptor-deficient (LDLR(-/-)) mouse.
View Article and Find Full Text PDFForward genetic approaches to identify genes involved in complex traits such as common human diseases have met with limited success. Fine mapping of linkage regions and validation of positional candidates are time-consuming and not always successful. Here we detail a hybrid procedure to map loci involved in complex traits that leverages the strengths of forward and reverse genetic approaches.
View Article and Find Full Text PDF