Lineage plasticity and histologic transformation from prostate adenocarcinoma to neuroendocrine prostate cancer (NEPC) occurs in up to 15-20% of patients with castration-resistant prostate cancer (CRPC) as mechanism of treatment resistance and is associated with aggressive disease and poor prognosis. NEPC tumors typically display small cell carcinoma morphology with loss of androgen receptor (AR) expression and gain of neuroendocrine (NE) lineage markers. However, there is a spectrum of phenotypes that are observed during the lineage plasticity process, and the clinical significance of mixed histologies or those that co-express AR and NE markers or lack all markers is not well defined.
View Article and Find Full Text PDFProstate-specific membrane antigen (PSMA) is a theranostic target for metastatic prostate cancer (PCa). However, castration-resistant PCa (CRPC) may lose PSMA expression after systemic therapy. Fibroblast activation protein (FAP), expressed by carcinoma-associated fibroblasts in various cancer types, including PCa, has the potential to be an alternative target.
View Article and Find Full Text PDFBone metastases are the most severe and prevalent consequences of prostate cancer (PC), affecting more than 80% of patients with advanced PC. PCBMs generate pain, pathological fractures, and paralysis. As modern therapies increase survival, more patients are suffering from these catastrophic consequences.
View Article and Find Full Text PDFHistotripsy is a noninvasive focused ultrasound therapy that mechanically fractionates tissue to create well-defined lesions. In a previous clinical pilot trial to treat benign prostatic hyperplasia (BPH), histotripsy did not result in consistent objective improvements in symptoms, potentially because of the fibrotic and mechanically tough nature of this tissue. In this study, we aimed to identify the dosage required to homogenize BPH tissue by different histotripsy modalities, including boiling histotripsy (BH) and cavitation histotripsy (CH).
View Article and Find Full Text PDFHistotripsy is a noninvasive focused ultrasound therapy that mechanically fractionates tissue to create well-defined lesions. In a previous clinical pilot trial to treat benign prostatic hyperplasia (BPH), histotripsy did not result in consistent objective improvements in symptoms, potentially because of the fibrotic and mechanically tough nature of this tissue. In this study, we aimed to identify the dosage required to homogenize BPH tissue by different histotripsy modalities, including boiling histotripsy (BH) and cavitation histotripsy (CH).
View Article and Find Full Text PDFOpen-top light-sheet (OTLS) microscopy offers rapid 3D imaging of large optically cleared specimens. This enables nondestructive 3D pathology, which provides key advantages over conventional slide-based histology including comprehensive sampling without tissue sectioning/destruction and visualization of diagnostically important 3D structures. With 3D pathology, clinical specimens are often labeled with small-molecule stains that broadly target nucleic acids and proteins, mimicking conventional hematoxylin and eosin (H&E) dyes.
View Article and Find Full Text PDFTherapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity.
View Article and Find Full Text PDFHuman tissue, which is inherently three-dimensional (3D), is traditionally examined through standard-of-care histopathology as limited two-dimensional (2D) cross-sections that can insufficiently represent the tissue due to sampling bias. To holistically characterize histomorphology, 3D imaging modalities have been developed, but clinical translation is hampered by complex manual evaluation and lack of computational platforms to distill clinical insights from large, high-resolution datasets. We present TriPath, a deep-learning platform for processing tissue volumes and efficiently predicting clinical outcomes based on 3D morphological features.
View Article and Find Full Text PDFPapillary urothelial carcinomas are currently graded as either low- or high-grade tumors based on World Health Organization (WHO) 2022 guidelines for genitourinary tumors. However, a minority of tumors are mixed-grade tumors, composed predominantly of low-grade cancer with a minor high-grade component. In the 2022 WHO these cancers are recognized as having outcomes comparable to low-grade cancers, although data to date has been limited.
View Article and Find Full Text PDFTargeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival.
View Article and Find Full Text PDFWhile there is a great clinical need to understand the biology of metastatic cancer in order to treat it more effectively, research is hampered by limited sample availability. Research autopsy programmes can crucially advance the field through synchronous, extensive, and high-volume sample collection. However, it remains an underused strategy in translational research.
View Article and Find Full Text PDFRecent advances in 3D pathology offer the ability to image orders of magnitude more tissue than conventional pathology methods while also providing a volumetric context that is not achievable with 2D tissue sections, and all without requiring destructive tissue sectioning. Generating high-quality 3D pathology datasets on a consistent basis, however, is not trivial and requires careful attention to a series of details during tissue preparation, imaging and initial data processing, as well as iterative optimization of the entire process. Here, we provide an end-to-end procedure covering all aspects of a 3D pathology workflow (using light-sheet microscopy as an illustrative imaging platform) with sufficient detail to perform well-controlled preclinical and clinical studies.
View Article and Find Full Text PDFTherapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To fully capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity.
View Article and Find Full Text PDFDistinguishing indolent from clinically significant localized prostate cancer is a major clinical challenge and influences clinical decision-making between treatment and active surveillance. The development of novel predictive biomarkers will help with risk stratification, and clinical decision-making, leading to a decrease in over or under-treatment of patients with prostate cancer. Here, we report that Trop2 is a prognostic tissue biomarker for clinically significant prostate cancer by utilizing the Canary Prostate Cancer Tissue Microarray (CPCTA) cohort composed of over 1100 patients from a multi-institutional study.
View Article and Find Full Text PDFIn recent years, technological advances in tissue preparation, high-throughput volumetric microscopy, and computational infrastructure have enabled rapid developments in nondestructive 3D pathology, in which high-resolution histologic datasets are obtained from thick tissue specimens, such as whole biopsies, without the need for physical sectioning onto glass slides. While 3D pathology generates massive datasets that are attractive for automated computational analysis, there is also a desire to use 3D pathology to improve the visual assessment of tissue histology. In this perspective, we discuss and provide examples of potential advantages of 3D pathology for the visual assessment of clinical specimens and the challenges of dealing with large 3D datasets (of individual or multiple specimens) that pathologists have not been trained to interpret.
View Article and Find Full Text PDFProstate cancer prognostication largely relies on visual assessment of a few thinly sectioned biopsy specimens under a microscope to assign a Gleason grade group (GG). Unfortunately, the assigned GG is not always associated with a patient's outcome in part because of the limited sampling of spatially heterogeneous tumors achieved by 2-dimensional histopathology. In this study, open-top light-sheet microscopy was used to obtain 3-dimensional pathology data sets that were assessed by 4 human readers.
View Article and Find Full Text PDFHOXB13 is a key lineage homeobox transcription factor that plays a critical role in the differentiation of the prostate gland. Several studies have suggested that HOXB13 alterations may be involved in prostate cancer development and progression. Despite its potential biological relevance, little is known about the expression of HOXB13 across the disease spectrum of prostate cancer.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) are a promising targeted cancer therapy; however, patient selection based solely on target antigen expression without consideration for cytotoxic payload vulnerabilities has plateaued clinical benefits. Biomarkers to capture patients who might benefit from specific ADCs have not been systematically determined for any cancer. We present a comprehensive therapeutic and biomarker analysis of a B7H3-ADC with pyrrolobenzodiazepine(PBD) payload in 26 treatment-resistant, metastatic prostate cancer (mPC) models.
View Article and Find Full Text PDFRecent advances in 3D pathology offer the ability to image orders-of-magnitude more tissue than conventional pathology while providing a volumetric context that is lacking with 2D tissue sections, all without requiring destructive tissue sectioning. Generating high-quality 3D pathology datasets on a consistent basis is non-trivial, requiring careful attention to many details regarding tissue preparation, imaging, and data/image processing in an iterative process. Here we provide an end-to-end protocol covering all aspects of a 3D pathology workflow (using light-sheet microscopy as an illustrative imaging platform) with sufficient detail to perform well-controlled preclinical and clinical studies.
View Article and Find Full Text PDF3' untranslated region (3' UTR) somatic mutations represent a largely unexplored avenue of alternative oncogenic gene dysregulation. To determine the significance of 3' UTR mutations in disease, we identify 3' UTR somatic variants across 185 advanced prostate tumors, discovering 14,497 single-nucleotide mutations enriched in oncogenic pathways and 3' UTR regulatory elements. By developing two complementary massively parallel reporter assays, we measure how thousands of patient-based mutations affect mRNA translation and stability and identify hundreds of functional variants that allow us to define determinants of mutation significance.
View Article and Find Full Text PDFThe complement system is a major component of the innate immune system that works through the cytolytic effect of the membrane attack complex (MAC). Complement component 7 (C7) is essential for MAC assembly and its precisely regulated expression level is crucial for the cytolytic activity of MAC. We show that C7 is specifically expressed by the stromal cells in both mouse and human prostates.
View Article and Find Full Text PDFProstate cancer treatment decisions rely heavily on subjective visual interpretation [assigning Gleason patterns or International Society of Urological Pathology (ISUP) grade groups] of limited numbers of two-dimensional (2D) histology sections. Under this paradigm, interobserver variance is high, with ISUP grades not correlating well with outcome for individual patients, and this contributes to the over- and undertreatment of patients. Recent studies have demonstrated improved prognostication of prostate cancer outcomes based on computational analyses of glands and nuclei within 2D whole slide images.
View Article and Find Full Text PDF