Prolonged exposure to the galactic cosmic ray (GCR) environment is a potentially limiting factor for manned missions in deep space. Evaluating the risk associated with the expected GCR environment is an essential step in planning a deep space mission. This requires an understanding of how the local interstellar spectrum is modulated by the heliospheric magnetic field (HMF) and how observed solar activity is manifested in the HMF over time.
View Article and Find Full Text PDFThe space radiation environment is a complex mixture of particle types and energies originating from sources inside and outside of the galaxy. These environments may be modified by the heliospheric and geomagnetic conditions as well as planetary bodies and vehicle or habitat mass shielding. In low Earth orbit (LEO), the geomagnetic field deflects a portion of the galactic cosmic rays (GCR) and all but the most intense solar particle events (SPE).
View Article and Find Full Text PDFLife Sci Space Res (Amst)
August 2017
In this work, the radiation environment on the Martian surface, as produced by galactic cosmic radiation incident on the atmosphere, is modeled using the Monte Carlo radiation transport code, High Energy Transport Code-Human Exploration and Development in Space (HETC-HEDS). This work is performed in participation of the 2016 Mars Space Radiation Modeling Workshop held in Boulder, CO, and is part of a larger collaborative effort to study the radiation environment on the surface of Mars. Calculated fluxes for neutrons, protons, deuterons, tritons, helions, alpha particles, and heavier ions up to Fe are compared with measurements taken by Radiation Assessment Detector (RAD) instrument aboard the Mars Science Laboratory over a period of 2 months.
View Article and Find Full Text PDFThe radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations.
View Article and Find Full Text PDFIn order to define the ranges of relevant neutron energies for the purposes of measurement and dosimetry in space, we have performed a series of Monte Carlo transport model calculations that predict the neutron field created by Galactic Cosmic Ray interactions inside a variety of simple shielding configurations. These predictions indicate that a significant fraction of the neutron fluence and neutron effective dose lies in the region above 20 MeV up to several hundred MeV. These results are consistent over thicknesses of shielding that range from very thin (2.
View Article and Find Full Text PDFNASA has derived new models for radiological risk assessment based on epidemiological data and radiation biology including differences in Relative Biological Effectiveness for leukemia and solid tumors. Comprehensive approaches were used to develop new risk cross sections and the extension of these into recommendations for risk assessment during space missions. The methodology relies on published data generated and the extensive research initiative managed by the NASA Human Research Program (HRP) and reviewed by the National Academy of Sciences.
View Article and Find Full Text PDFEarlier particle experiments in the 1970s on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al.
View Article and Find Full Text PDFRecently, NASA established a consortium involving the University of Tennessee (lead institution), the University of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB).
View Article and Find Full Text PDFRadiat Prot Dosimetry
March 2006
Human exploration of the solar system beyond Earth's orbit will entail many risks for the crew on these deep space missions. One of the most significant health risks is exposure to the harsh space radiation environment beyond the protection provided by the Earth's intrinsic magnetic field. Crew on exploration missions will be exposed to a complex mixture of very energetic particles.
View Article and Find Full Text PDFOver the past two decades, hypothetical models of "worst-case" solar particle event (SPE) spectra have been proposed in order to place an upper bound on radiation doses to critical body organs of interplanetary crews on deep space missions. These event spectra are usually formulated using hypothetical extrapolations of space measurements for previous large events. Here we take a different approach.
View Article and Find Full Text PDFA methodology for predicting solar particle event doses using Bayesian inference is being developed. As part of this development, we have tested criteria for categorization of new solar particle events (SPE) using calculated asymptotic doses and dose rates for the 22 SPEs that occurred in 2001. In 9 out of 22 events, our criteria for categorization would have over-predicted the range of asymptotic doses in which the tested events would have fallen.
View Article and Find Full Text PDFIn many instances, bone marrow dose equivalents averaged over the entire body have been used as a surrogate for whole-body dose equivalents in space radiation protection studies. However, career radiation limits for space missions are expressed as effective doses. This study compares calculations of effective doses to average bone marrow dose equivalents for several large solar particle events (SPEs) and annual galactic cosmic ray (GCR) spectra, in order to examine the suitability of substituting bone marrow dose equivalents for effective doses.
View Article and Find Full Text PDF