This review provides a current summary of the major sources and distribution of ocean plastic contamination, their potential environmental effects, and prospects towards the mitigation of plastic pollution. A characterization between micro and macro plastics has been established, along with a comprehensive discussion of the most common plastic waste sources that end up in aquatic environments within these categories. Distribution of these sources stems mainly from improper waste management, road runoff, and wastewater pathways, along with potential routes of prevention.
View Article and Find Full Text PDFIn this study, polyethersulfone (PES) was blended into epoxy resins to improve the fracture toughness of the epoxy resin without loss of mechanical properties, and then two grades of pristine graphene nanoplatelets (GnPs) were separately introduced into the PES/epoxy system to fabricate thermally conductive GnPs/PES/epoxy composites with high toughness as well as high stiffness. It was observed that the addition of GnPs obviously affected the final phase morphology by suppressing the phase separation process of the PES modified epoxy due to the increased viscosity and cure-reaction rate of PES/epoxy. The GnPs with a larger lateral dimension revealed a greater reinforcing effect, and the inclusion of 3 wt % GnPs (~5 μm in diameter) endowed the PES/epoxy matrix with a good thermal conductivity and improved the tensile, flexural, and storage modulus by 27.
View Article and Find Full Text PDFGraphene nanoplatelets (GnP) can be made into a thin 'paper' through vacuum filtration of GnP suspension. Electrodes were fabricated from the compressed GnP paper and then by coating the surface with epoxy. The electrostatic actuator was constructed from two parallel-aligned composite papers fixed at the anode and a cathode connected to ground.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2014
Exfoliated graphite nanoplatelets (GnP) has been investigated as an electrocatalyst support for fuel cell applications. GnP-supported Pt catalysts were synthesized by a microwave process in the presence of room temperature ionic liquids (RTILs). Thermal-oxidation resistance of GnP and GnP-supported Pt catalysts was studied by thermogravimetric analysis and compared with a variety of other carbon nanostructures: carbon black, graphite nanofiber, single- and multiwalled carbon nanotubes.
View Article and Find Full Text PDFGraphene oxide (GO) is a potential precursor for the bulk production of graphene as the synthetic route is simple and cost-effective. Typically, reduction of GO is a time-consuming process and involves either toxic/hazardous reducing agents or high temperature treatment. Herein, we report the role of intercalated water and thickness of GO films towards the reduction of GO employing simple camera flash.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2012
The difficulty of dispersing cellulose nanofibers (CNFs) in hydrophobic polymers such as poly(lactic acid) (PLA) remains a major obstacle to the expansion of cellulose nanocomposite applications. In this work, we employed the solvent evaporation technique commonly used for drug microencapsulation to suspend PLA in water as microparticles. The suspension of the microparticles was easily mixed with the CNFs prepared by high-pressure homogenization.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
February 2011
Electrospinning is a rapidly developing technology that provides a unique way to produce novel polymer nanofibers with controllable diameters. Cellulose nitrate non-woven mats of submicron-sized fibers with diameters of 100-1200 nm were prepared. The effects of processing equipment collector design void gap, and steel drum coated with polyvinylidene dichloride (PVDC) were investigated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2011
Monodispersed Au nanoparticles are synthesized on the surface of exfoliated graphene nanoplatelets (GNP) in the presence of polyethyleneimine (PEI) with microwave assisted heating. A highly structured layered Au/GNP "paper" with good flexibility and mechanical robustness is prepared by vacuum assisted self-assembly. The thermal and electrical conductivity of the hybrid paper with and without the Au nanoparticles are investigated after different experimental processing conditions including thermal annealing and cold compaction.
View Article and Find Full Text PDFCellulose nitrate nonwoven mats of submicron-sized fibers (100-1200 nm in diameter) were obtained by electrospinning cellulose nitrate solutions. Two solvent systems were evaluated. A 70:30 (wt) ratio of ethanol to acetone and a 60:40 (wt) ratio of tetrahydrofuran (THF) to N,N-dimethylformamide (DMF) were studied.
View Article and Find Full Text PDFElectrospinning is a versatile and cost effective method to fabricate biocompatible nanofibrous materials. The novel nanostructure significantly increases the surface area and mass transfer rate, which improves the biochemical binding effect and sensor signal to noise ratio. This paper presents the electrospinning method of nitrocellulose nanofibrous membrane and its antibody functionalization for application of bacterial and viral pathogen detection.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2010
The diverse physical and chemical aspects of graphene nanosheets such as particle size surface area and edge chemistry were combined to fabricate a new supercapacitor electrode architecture consisting of a highly aligned network of large-sized nanosheets as a series of current collectors within a multilayer configuration of bulk electrode. Capillary driven self-assembly of monolayers of graphene nanosheets was employed to create a flexible, multilayer, free-standing film of highly hydrophobic nanosheets over large macroscopic areas. This nanoarchitecture exhibits a high-frequency capacitative response and a nearly rectangular cyclic voltammogram at 1000 mV/s scanning rate and possesses a rapid current response, small equivalent series resistance (ESR), and fast ionic diffusion for high-power electrical double-layer capacitor (EDLC) application.
View Article and Find Full Text PDFWe report the novel fabrication of a highly sensitive, selective, fast responding, and affordable amperometric glucose biosensor using exfoliated graphite nanoplatelets (xGnPs) decorated with Pt and Pd nanoparticles. Nafion was used to solubilize metal-decorated graphite nanoplatelets, and a simple cast method with high content organic solvent (85 wt %) was used to prepare the biosensors. The addition of precious metal nanoparticles such as platinum (Pt) and palladium (Pd) to xGnP increased the electroactive area of the electrode and substantially decreased the overpotential in the detection of hydrogen peroxide.
View Article and Find Full Text PDFA monolayer of ultrathin sheets of highly hydrophobic graphene nanosheets was prepared on a large area substrate via self-assembly at the liquid-liquid interface. Driven by the minimization of interfacial energy these planar shaped graphene nanosheets produce a close packed monolayer structure at the liquid-liquid interface. This monolayer film shows high electrical conductivity of more than 1000 S/cm and an optical transmission of more than 70% at a wavelength of 550 nm.
View Article and Find Full Text PDFThe thermophysical properties of unsaturated polyester (UPE) nanocomposites reinforced by organo-montmorillonite clay nanoplatelets are reported. The organo-clay nanoplatelets were sonicated in acetone for 2 hours to be dispersed in the UPE matrix. Vacuum extraction removed not only the acetone but also the styrene present in the UPE solution.
View Article and Find Full Text PDFThere is growing interest in developing bio-based products and innovative process technologies that can reduce the dependence on fossil fuel and move to a sustainable materials basis. Biodegradable bio-based nanocomposites are the next generation of materials for the future. Renewable resource-based biodegradable polymers including cellulosic plastic (plastic made from wood), corn-derived plastics, and polyhydroxyalkanoates (plastics made from bacterial sources) are some of the potential biopolymers which, in combination with nanoclay reinforcement, can produce nanocomposites for a variety of applications.
View Article and Find Full Text PDF"Green" nanocomposites have been successfully fabricated from cellulose acetate (CA) powder, eco-friendly triethyl citrate (TEC) plasticizer and organically modified clay. The effect of the amount of plasticizer varying from 15 to 40 wt % on the performance of the nanocomposites has been evaluated. The morphologies of these nanocomposites were evaluated through X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) studies.
View Article and Find Full Text PDF