Publications by authors named "Lawrence Sowers"

Increased expression of the human telomere reverse transcriptase (hTERT) in tumors promotes tumor cell survival and diminishes the survival of patients. Cytosine-to-thymine (C-to-T) transition mutations (C250T or C228T) in the promoter create binding sites for transcription factors, which enhance transcription. The G-rich strand of the promoter can form G-quadruplex structures, whereas the C-rich strand can form an i-motif in which multiple cytosine residues are protonated.

View Article and Find Full Text PDF

Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary structures, including the G-quadruplex. These structures can exist within gene promoters, telomeric DNA, and regions of the genome frequently found altered in human cancers. DNA is also subject to hydrolytic and oxidative damage, and its local structure can influence the type of damage and its magnitude.

View Article and Find Full Text PDF

Recently, we constructed a hybrid thymine DNA glycosylase (hyTDG) by linking a 29-amino acid sequence from the human thymine DNA glycosylase with the catalytic domain of DNA mismatch glycosylase (MIG) from , increasing the overall activity of the glycosylase. Previously, it was shown that a tyrosine to lysine (Y126K) mutation in the catalytic site of MIG could convert the glycosylase activity to a lyase activity. We made the corresponding mutation to our hyTDG to create a hyTDG-lyase (Y163K).

View Article and Find Full Text PDF

The DNA of all living organisms is persistently damaged by endogenous reactions including deamination and oxidation. Such damage, if not repaired correctly, can result in mutations that drive tumor development. In addition to chemical damage, recent studies have established that DNA bases can be enzymatically modified, generating many of the same modified bases.

View Article and Find Full Text PDF

Glioblastoma is a fatal brain tumor with a bleak prognosis. The use of chemotherapy, primarily the alkylating agent temozolomide, coupled with radiation and surgical resection, has provided some benefit. Despite this multipronged approach, average patient survival rarely extends beyond 18 months.

View Article and Find Full Text PDF

DNA damage drives genetic mutations that underlie the development of cancer in humans. Multiple pathways have been described in mammalian cells which can repair this damage. However, most work to date has focused upon single lesions in DNA.

View Article and Find Full Text PDF

The hydrolytic deamination of cytosine and 5-methylcytosine drives many of the transition mutations observed in human cancer. The deamination-induced mutagenic intermediates include either uracil or thymine adducts mispaired with guanine. While a substantial array of methods exist to measure other types of DNA adducts, the cytosine deamination adducts pose unusual analytical problems, and adequate methods to measure them have not yet been developed.

View Article and Find Full Text PDF

The current COVID-19 pandemic has presented unprecedented challenges to the world community. No effective therapies or vaccines have yet been established. Upon the basis of homologies to similar coronaviruses, several potential drug targets have been identified and are the focus of both laboratory and clinical investigation.

View Article and Find Full Text PDF

Rapidly proliferating tumors are exposed to a hypoxic microenvironment because of their density, high metabolic consumption, and interruptions in blood flow because of immature angiogenesis. Cellular responses to hypoxia promote highly malignant and metastatic behavior, as well as a chemotherapy-resistant state. To better understand the complex relationships between hypoxic adaptations and cancer progression, we studied the dynamic proteome responses of glioblastoma cells exposed to hypoxia via an innovative approach: quantification of newly synthesized proteins using heavy stable-isotope arginine labeling combined with accurate assessment of cell replication by quantification of the light/heavy arginine ratio of peptides in histone H4.

View Article and Find Full Text PDF

Mutations in the gene encoding the methyl-CG binding protein MeCP2 cause several neurological disorders including Rett syndrome. The di-nucleotide methyl-CG (mCG) is the classical MeCP2 DNA recognition sequence, but additional methylated sequence targets have been reported. Here we show by in vitro and in vivo analyses that MeCP2 binding to non-CG methylated sites in brain is largely confined to the tri-nucleotide sequence mCAC.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a major health challenge worldwide. Factors thought to be important in CRC etiology include diet, microbiome, exercise, obesity, a history of colon inflammation and family history. Interventions, including the use of non-steroidal anti-Inflammatory drugs (NSAIDs) and anti-inflammatory agents, have been shown to decrease incidence in some settings.

View Article and Find Full Text PDF

Background And Purpose: We hypothesized that an in vitro, stretch-based model of neural injury may be useful to identify compounds that decrease the cellular damage in neurotrauma.

Experimental Approach: We screened three neural cell lines (B35, RN33B and SH-SY5Y) subjected to two differentiation methods and selected all-trans-retinoic acid-differentiated B35 rat neuroblastoma cells subjected to rapid stretch injury, coupled with a subthreshold concentration of H O , for the screen. The model induced marked alterations in gene expression and proteomic signature of the cells and culminated in delayed cell death (LDH release) and mitochondrial dysfunction [reduced 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) conversion].

View Article and Find Full Text PDF

M2b macrophages (Mφ) play a major role in the increased susceptibility of subacutely burned patients, to sepsis stemming from enterococcal translocation. Certain opportunistic infections in severely burned mice have been controlled by murine CCL1 antisense oligodeoxynucleotide (ODN), a specific polarizer of mouse M2bMφ. In the present study, we have screened CCL1 antisense ODN, which is active against human M2bMφ.

View Article and Find Full Text PDF

Accumulating evidence suggests that cellular metabolites and nutrition levels control epigenetic modifications, including histone methylation. However, it is not currently possible to measure the metabolic control of histone methylation. Here we report a novel detection method to monitor methyl transfer from serine to histones through the one-carbon metabolic pathway, using stable-isotope labeling and detection of lysine methylation signature ions generated in high-energy-dissociation (HCD) tandem mass spectrometry.

View Article and Find Full Text PDF

Backgrounds And Aims: Low concentrations of plasma HDL-C are associated with the development of atherosclerotic cardiovascular diseases and type 2 diabetes. Here we aimed to explore the relationship between the in vivo fractional synthesis of triglycerides (fTG) in subcutaneous (s.q.

View Article and Find Full Text PDF

The DNA of all organisms is metabolically active due to persistent endogenous DNA damage, repair, and enzyme-mediated base modification pathways important for epigenetic reprogramming and antibody diversity. The free bases released from DNA either spontaneously or by base excision repair pathways constitute DNA metabolites in living tissues. In this study, we have synthesized and characterized the stable-isotope standards for a series of pyrimidines derived from the normal DNA bases by oxidation and deamination.

View Article and Find Full Text PDF

Abnormal epigenetic reprogramming is one of the major causes leading to irregular gene expression and regulatory pathway perturbations, in the cells, resulting in unhealthy cell development or diseases. Accurate measurements of these changes of epigenetic modifications, especially the complex histone modifications, are very important, and the methods for these measurements are not trivial. By following our previous introduction of PRM to targeting histone modifications (Tang, H.

View Article and Find Full Text PDF

Objective: To determine the role of norepinephrine (NE) on DNA damage and reactive oxygen species (ROS) generation in ovarian surface epithelial cells.

Method: Non-tumorigenic, immortalized ovarian surface epithelial cells were treated with NE, bleomycin, and bleomycin followed by NE. The comet assay was performed on each treatment group to determine the amount of single and double-strand breaks induced by treatments.

View Article and Find Full Text PDF

Breast tumors often show profound sensitivity to exogenous oxidative stress. Investigational agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) induces aryl hydrocarbon receptor (AhR)-mediated DNA damage in certain breast cancer cells. Since AhR agonists often elevate intracellular oxidative stress, we hypothesize that 5F 203 increases reactive oxygen species (ROS) to induce DNA damage, which thwarts breast cancer cell growth.

View Article and Find Full Text PDF

Telomeric DNA can form duplex regions or single-stranded loops that bind multiple proteins, preventing it from being processed as a DNA repair intermediate. The bases within these regions are susceptible to damage; however, mechanisms for the repair of telomere damage are as yet poorly understood. We have examined the effect of three thymine (T) analogs including uracil (U), 5-fluorouracil (5FU) and 5-hydroxymethyluracil (5hmU) on DNA-protein interactions and DNA repair within the GGTTAC telomeric sequence.

View Article and Find Full Text PDF

Histone acetylation and methylation play an important role in the regulation of gene expression. Irregular patterns of histone global acetylation and methylation have frequently been seen in various diseases. Quantitative analysis of these patterns is of high value for the evaluation of disease development and of outcomes from therapeutic treatment.

View Article and Find Full Text PDF

Malignant brain tumors are among the most lethal of human tumors, with limited treatment options currently available. A complex array of recurrent genetic and epigenetic changes has been observed in gliomas that collectively result in derangements of common cell signaling pathways controlling cell survival, proliferation, and invasion. One important determinant of gene expression is DNA methylation status, and emerging studies have revealed the importance of a recently identified demethylation pathway involving 5-hydroxymethylcytosine (5hmC).

View Article and Find Full Text PDF

Background: Glucocorticoids (GCs) are often included in the therapy of lymphoid malignancies because they kill several types of malignant lymphoid cells. GCs activate the glucocorticoid receptor (GR), to regulate a complex genetic network, culminating in apoptosis. Normal lymphoblasts and many lymphoid malignancies are sensitive to GC-driven apoptosis.

View Article and Find Full Text PDF

Inflammation-mediated reactive molecules can result in an array of oxidized and halogenated DNA-damage products, including 5-chlorocytosine ((Cl)C). Previous studies have shown that (Cl)C can mimic 5-methylcytosine ((m)C) and act as a fraudulent epigenetic signal, promoting the methylation of previously unmethylated DNA sequences. Although the 5-halouracils are good substrates for base-excision repair, no repair activity has yet been identified for (Cl)C.

View Article and Find Full Text PDF

Interest in noncovalent interactions involving halogens, particularly halogen bonds (X-bonds), has grown dramatically in the past decade, propelled by the use of X-bonding in molecular engineering and drug design. However, it is clear that a complete analysis of the structure-energy relationship must be established in biological systems to fully exploit X-bonds for biomolecular engineering. We present here the first comprehensive experimental study to correlate geometries with their stabilizing potentials for fluorine (F), chlorine (Cl), bromine (Br), or iodine (I) X-bonds in a biological context.

View Article and Find Full Text PDF