Publications by authors named "Lawrence Mzukisi Madikizela"

The occurrence of 58 pharmaceutically active compounds (PhACs) in surface water at 28 coastal and five river sites, and in two stormwater flows in Cape Town, South Africa, was investigated in winter and summer. After accounting for quality assurance and control data, 33 PhACs were considered in detail. In winter, 25 PhACs were found at one or more sites and 27 in summer.

View Article and Find Full Text PDF

This study investigated the occurrence of ibuprofen, naproxen, sulfamethoxazole, trimethoprim, and efavirenz in water resources (river, estuarine, and sea waters) of the East London coastline, South Africa. These pharmaceuticals were previously reported to be dominant in wastewater and inland rivers of South Africa. Hence, it is important to monitor their occurrence in the coastal and marine environment.

View Article and Find Full Text PDF

Marine molluscs are of enormous scientific interest due to their astonishing diversity in terms of their size, shape, habitat, behaviour, and ecological roles. The phylum Mollusca is the second most common animal phylum, with 100,000 to 200,000 species, and marine molluscs are among the most notable class of marine organisms. This work aimed to show the importance of marine molluscs as a potential source of nutraceuticals as well as natural medicinal drugs.

View Article and Find Full Text PDF

Globally, per- and polyfluoroalkyl substances (PFAS)-related research on paper products has focused on food packaging with less consideration on the presence of PFAS at different stages of the paper recycling chain. This study analysed the prevalence of PFAS in paper grades used for the manufacture of recycled paperboard. The presence of PFAS was attributed to the use of PFAS-containing additives, consumer usage, exposure to packed goods as well as contamination during mingling, sorting, collection, and recovery of paper recycling material.

View Article and Find Full Text PDF

The extent of removal of pharmaceuticals by African-based wastewater treatment plants (WWTPs) is relatively unknown with various studies observing high concentrations in effluents. This is mainly due to WWTPs still utilising the traditional treatment methods which are known to be less effective. In this study, 15 selected antibiotics (amoxicillin, ampicillin, azithromycin, ciprofloxacin, doxycycline, erythromycin, gentamicin, metronidazole, norfloxacin, ofloxacin, penicillin, sulfamethoxazole, sulfapyridine, tetracycline and trimethoprim) were monitored in wastewater as it goes through sedimentation (primary and secondary), aeration and chlorination stages of a WWTP.

View Article and Find Full Text PDF

The introduction of large amounts of pharmaceuticals into the environmental waters is well-documented in literature with their occurrence reported in all different water matrices accessible to humans and animals. At the same time, the increasing consumption of coffee and tea-based beverages results in the generation of solid waste, which is mostly disposed-off in the environment. To minimize environmental pollution, coffee and tea-based materials have been proposed as suitable options to remove pharmaceuticals in environmental waters.

View Article and Find Full Text PDF

In this work, we demonstrate the development, evaluation and pre-liminary application of a novel passive sampler for monitoring of selected pharmaceuticals in environmental waters. The samplers were calibrated in laboratory-based experiments to obtain sampling rates (Rs) for carbamazepine, methocarbamol, etilefrine, venlafaxine and nevirapine. Passive sampling was based on the diffusion of the target pharmaceuticals from surface water through a membrane bag which housed an ionic liquid as a green receiving solvent and a molecularly imprinted polymer.

View Article and Find Full Text PDF

Pharmaceuticals and their metabolites are continuously invading the marine environment due to their input from the land such as their disposal into the drains and sewers which is mostly followed by their transfer into wastewater treatment plants (WWTPs). Their incomplete removal in WWTPs introduces pharmaceuticals into oceans and surface water. To date, various pharmaceuticals and their metabolites have been detected in marine environment.

View Article and Find Full Text PDF
Article Synopsis
  • Pharmaceuticals like NSAIDs and analgesics can be absorbed by plants primarily through contaminated water and sewage sludge, leading to both benefits and drawbacks.
  • Studies show that these drugs can move from plant roots to aerial parts, and their metabolites have also been found in plants.
  • The article reviews plant uptake, translocation, toxic effects, and potential remediation methods using constructed wetlands, while highlighting future research needs in this area.
View Article and Find Full Text PDF

Membrane protected extraction is an ongoing innovation for isolation and pre-concentration of analytes from complex samples. The extraction process, clean-up and pre-concentration of analytes occur in a single step. The inclusion of solid sorbents such as molecularly imprinted polymers (MIPs) after membrane extraction ensures that selective double extraction occurs in a single step.

View Article and Find Full Text PDF

In recent years, fluoroquinolones have been found present in important water resources and food sources which compromises the food quality and availability, thereby, causing risks to the consumer. Despite the recent advancement in the development of analytical instrumentation for routine monitoring of fluoroquinolones in water, food, and biological samples, sample pre-treatment is still a major bottleneck of the analytical methods. Therefore, fast, selective, sensitive, and cost-effective sample preparation methods prior to instrumental analysis for fluoroquinolones residues in environmental, food and biological samples are increasingly important.

View Article and Find Full Text PDF

This work demonstrates development and evaluation of a two-way technique based on the combination of membrane assisted solvent extraction and a molecularly imprinted polymer (MASE-MIP) for selective and efficient extraction of five selected pharmaceuticals belonging to five different therapeutic classes. The pharmaceuticals were extracted from surface water samples followed by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-qTOF/MS) determination. A central composite design was applied to optimize the influence of the sample salt content, the stirring rate, the stirring time and the amount of MIP on the extraction of an anticonvulsant (carbamazepine), a cardiac stimulant (etilefrine), a muscle relaxant (methocarbamol), an antiretroviral (nevirapine) and an antidepressant (venlafaxine) from surface water.

View Article and Find Full Text PDF

Globally, water hyacinth is recognized as an invasive species that threatens the survival of aquatic organisms. Its removal from water is performed manually or physically to avoid the secondary water pollution that results through the usage of chemically synthesised herbicides for its control, thus generating solid waste. Among other things, scientists have proposed the conversion of this waste into adsorbents that can be utilized for the remediation of water resources.

View Article and Find Full Text PDF

Non-steroidal anti-inflammatory drugs (NSAIDs) are medications used individually or as mixtures with other pharmaceuticals for the treatment of various illnesses. Their easy accessibility and high human consumption have resulted to their detection at high concentrations in South African water resources. In the present work, an extensive review of the occurrence and ecotoxicological risk assessment of NSAIDs in South African aquatic environment is provided.

View Article and Find Full Text PDF

In this article, a comprehensive review of applications of the hollow fibre-liquid phase microextraction (HF-LPME) for the isolation and pre-concentration of pharmaceuticals in water samples is presented. HF-LPME is simple, affordable, selective, and sensitive with high enrichment factors of up to 27,000-fold reported for pharmaceutical analysis. Both configurations (two- and three-phase extraction systems) of HF-LPME have been applied in the extraction of pharmaceuticals from water, with the three-phase system being more prominent.

View Article and Find Full Text PDF

Human consumption of non-steroidal anti-inflammatory drugs (NSAIDs) is increasing, which poses a great risk of pollution by these pharmaceuticals on the aquatic environment. Therefore, this study reports the optimization of microwave-assisted extraction using water as a green solvent and hollow fiber liquid-phase microextraction (HF-LPME) methods followed by high-performance liquid chromatography-high resolution mass spectrometry analysis of NSAIDs in wastewater and aquatic plant, Eichhornia crassipes. The optimized MAE resulted in efficient transfer of selected NSAIDs from plant samples into the aqueous phase yielding the recoveries ranging from 91 to115%.

View Article and Find Full Text PDF

Isinuka Springs at Port St Johns in the Eastern Cape Province of South Africa is a traditional spa sacred to the AmaMpondo tribe of the Xhosa speaking people. The bathing pond is considered to have healing powers both spiritually and therapeutically. Hundreds of people flock into the spiritual pond every weekend for both recreational and its spiritual healing power.

View Article and Find Full Text PDF

Pharmaceuticals are organic compounds used in medicines for alleviation of pain. Since 2017, there has been a steady increase on the availability of information on contamination of water resources caused by pharmaceuticals in some African countries. Thus far, most environmental monitoring studies of pharmaceuticals are conducted in South Africa while there is still no available data in majority of the African countries.

View Article and Find Full Text PDF

This work describes a simple and sensitive method for the simultaneous isolation, enrichment, identification and quantitation of selected antiretroviral drugs; emtricitabine, tenofovir disoproxil and efavirenz in aqueous samples and plants. The analytical method was based on microwave extraction and hollow fibre liquid phase microextraction technique coupled with ultra-high pressure liquid chromatography-high resolution mass spectrometry. A multivariate approach via a half-fractional factorial design was used focusing on six factors; donor phase pH, acceptor phase HCl concentration, extraction time, stirring rate, supported liquid membrane carrier composition and salt content.

View Article and Find Full Text PDF

The presence of various classes of pharmaceutical drugs in different environmental compartments has been reported worldwide. In South Africa, the detection of pharmaceuticals especially the non-steroidal anti-inflammatory drugs is recent, and more studies are being done in order to fully understand their fate in the aquatic environment. With considerations for the need of better sample preparation techniques, this study synthesized a molecularly imprinted polymer for the selective extraction of a non-steroidal anti-inflammatory drug, fenoprofen in aqueous environmental samples.

View Article and Find Full Text PDF

Sizeable amount of research has been conducted on the possible uptake of pharmaceuticals by plants from contaminated soil and water used for irrigation of crops. In most cases, pharmaceuticals are taken by roots and translocated into various tissues by transpiration and diffusion. Due to the plant uptake, the occurrence of pharmaceuticals in food sources such as vegetables is a public concern.

View Article and Find Full Text PDF

The present paper reports a detailed study that is based on the monitoring of naproxen, ibuprofen, and diclofenac in Mbokodweni River and wastewater treatment plants (WWTPs) located around the city of Durban in KwaZulu-Natal Province of South Africa. Target compounds were extracted from water samples using a multi-template molecularly imprinted solid-phase extraction prior to separation and quantification on a high-performance liquid chromatography equipped with photo diode array detector. The analytical method yielded the detection limits of 0.

View Article and Find Full Text PDF

The occurrence of pharmaceuticals used as non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics in the aquatic environment is a threat to humans and aquatic species at large. The primary route of these pharmaceuticals to aquatic environment is through human waste such as urine and faeces. The application of molecularly imprinted polymers (MIPs) in the solid-phase extraction (SPE) of such pollutants from environmental and biological samples is important for the pre-concentration of compounds and selectivity of the analytical methods.

View Article and Find Full Text PDF

In this review paper, the milestones and challenges that have been achieved and experienced by African Environmental Scientists regarding the assessment of water pollution caused by the presence of pharmaceutical compounds in water bodies are highlighted. The identification and quantification of pharmaceuticals in the African water bodies is important to the general public at large due to the lack of information. The consumption of pharmaceuticals to promote human health is usually followed by excretion of these drugs via urine or fecal matter due to their slight transformation in the human metabolism.

View Article and Find Full Text PDF

This study describes the application of multi-template molecularly imprinted polymer (MIP) as selective sorbent in the solid-phase extraction (SPE) of naproxen, ibuprofen and diclofenac from wastewater and river water. MIP was synthesized at 70°C by employing naproxen, ibuprofen and diclofenac as multi-templates, ethylene glycol dimethacrylate, 2-vinyl pyridine and toluene as cross-linker, functional monomer and porogen, respectively. Wastewater and river water samples (pH 2.

View Article and Find Full Text PDF