Background: The single pellet reaching and grasp (SPRG) task is a behavioural assay widely used to study motor learning, control and recovery after nervous system injury in animals. The manual training and assessment of the SPRG is labour intensive and time consuming and has led to the development of multiple devices which automate the SPRG task.
New Method: Here, using robotics, computer vision, and machine learning analysis of videos, we describe a device that can be left unattended, presents pellets to mice, and, using two supervised learning algorithms, classifies the outcome of each trial with an accuracy of greater than 94% without the use of graphical processing units (GPUs).
Intramuscular injection of an Adeno-associated viral vector serotype 1 (AAV1) encoding Neurotrophin-3 (NT3) into hindlimb muscles 24 h after a severe T9 spinal level contusion in rats has been shown to induce lumbar spinal neuroplasticity, partially restore locomotive function and reduce spasms during swimming. Here we investigate whether a targeted delivery of NT3 to lumbar and thoracic motor neurons 48 h following a severe contusive injury aids locomotive recovery in rats. AAV1-NT3 was injected bilaterally into the tibialis anterior, gastrocnemius and rectus abdominus muscles 48-h following trauma, persistently elevating serum levels of the neurotrophin.
View Article and Find Full Text PDFStroke causes devastating sensory-motor deficits and long-term disability due to disruption of descending motor pathways. Restoration of these functions enables independent living and therefore represents a high priority for those afflicted by stroke. Here, we report that daily administration of gabapentin, a clinically approved drug already used to treat various neurological disorders, promotes structural and functional plasticity of the corticospinal pathway after photothrombotic cortical stroke in adult mice.
View Article and Find Full Text PDFVia the peripheral and autonomic nervous systems, the spinal cord directly or indirectly connects reciprocally with many body systems (muscular, intengumentary, respiratory, immune, digestive, excretory, reproductive, cardiovascular, etc). Accordingly, spinal cord injury (SCI) can result in catastrophe for multiple body systems including muscle paralysis affecting movement and loss of normal sensation, as well as neuropathic pain, spasticity, reduced fertility and autonomic dysreflexia. Treatments and cure for an injured spinal cord will likely require access of therapeutic agents across the blood-CNS (central nervous system) barrier.
View Article and Find Full Text PDFBackground And Purpose: Stroke therapy still lacks successful measures to improve post stroke recovery. Neurotrophin-3 (NT-3) is one promising candidate which has proven therapeutic benefit in motor recovery in acute experimental stroke. Post stroke, the immune system has opposing pathophysiological roles: pro-inflammatory cascades and immune cell infiltration into the brain exacerbate cell death while the peripheral immune response has only limited capabilities to fight infections during the acute and subacute phase.
View Article and Find Full Text PDFThis report was produced by an Expert Working Group (EWG) consisting of UK-based researchers, veterinarians and regulators of animal experiments with specialist knowledge of the use of animal models of spinal cord injury (SCI). It aims to facilitate the implementation of the Three Rs (Replacement, Reduction and Refinement), with an emphasis on refinement. Specific animal welfare issues were identified and discussed, and practical measures proposed, with the aim of reducing animal use and suffering, reducing experimental variability, and increasing translatability within this critically important research field.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) is characterised by dopaminergic cell loss within the substantia nigra pars compacta (SNc) that leads to reduced striatal dopamine content and resulting motor deficits. Identifying new strategies to protect these cells from degeneration and retain striatal dopaminergic innervation is therefore of great importance. Chondroitin sulphate proteoglycans (CSPGs) are recognised contributors to the inhibitory extracellular milieu known to hinder tissue recovery following CNS damage.
View Article and Find Full Text PDFAfter a spinal cord injury, axons fail to regenerate in the adult mammalian central nervous system, leading to permanent deficits in sensory and motor functions. Increasing neuronal activity after an injury using electrical stimulation or rehabilitation can enhance neuronal plasticity and result in some degree of recovery; however, the underlying mechanisms remain poorly understood. We found that placing mice in an enriched environment before an injury enhanced the activity of proprioceptive dorsal root ganglion neurons, leading to a lasting increase in their regenerative potential.
View Article and Find Full Text PDFObjective: Neurotrophin-3 (NT3) plays a key role in the development and function of locomotor circuits including descending serotonergic and corticospinal tract axons and afferents from muscle and skin. We have previously shown that gene therapy delivery of human NT3 into affected forelimb muscles improves sensorimotor recovery after stroke in adult and elderly rats. Here, to move toward the clinic, we tested the hypothesis that intramuscular infusion of NT3 protein could improve sensorimotor recovery after stroke.
View Article and Find Full Text PDFUnilateral or bilateral corticospinal tract injury in the medullary pyramids in adult rats causes anatomical and physiological changes in proprioceptive neurons projecting to the cervical spinal cord accompanied by hyperreflexia and abnormal behavioural movements including spasms. In a previous publication, we showed that "Intramuscular Neurotrophin-3 normalizes low threshold spinal reflexes, reduces spasms and improves mobility after bilateral corticospinal tract injury in rats" (Kathe et al., 2016) [1].
View Article and Find Full Text PDFAfter axonal injury, chromatolysis (fragmentation of Nissl substance) can occur in the soma. Electron microscopy shows that chromatolysis involves fission of the rough endoplasmic reticulum. In CNS neurons (which do not regenerate axons back to their original targets) or in motor neurons or dorsal root ganglion neurons denied axon regeneration (e.
View Article and Find Full Text PDFIn animal experiments, neuroscientists typically assess the effectiveness of interventions by comparing the average response of groups of treated and untreated animals. While providing useful insights, focusing only on group effects risks overemphasis of small, statistically significant but physiologically unimportant, differences. Such differences can be created by analytical variability or physiological within-individual variation, especially if the number of animals in each group is small enough that one or two outlier values can have considerable impact on the summary measures for the group.
View Article and Find Full Text PDFAddressing the common problems that researchers encounter when designing and analysing animal experiments will improve the reliability of in vivo research. In this article, the Experimental Design Assistant (EDA) is introduced. The EDA is a web-based tool that guides the in vivo researcher through the experimental design and analysis process, providing automated feedback on the proposed design and generating a graphical summary that aids communication with colleagues, funders, regulatory authorities, and the wider scientific community.
View Article and Find Full Text PDFMost in vivo models of ischaemic stroke target the middle cerebral artery and a spectrum of stroke severities, from mild to substantial, can be achieved. This review describes opportunities to improve the in vivo modelling of ischaemic stroke and animal welfare. It provides a number of recommendations to minimise the level of severity in the most common rodent models of middle cerebral artery occlusion, while sustaining or improving the scientific outcomes.
View Article and Find Full Text PDFExtensive research is ongoing that concentrates on finding therapies to enhance CNS regeneration after spinal cord injury (SCI) and to cure paralysis. This review sheds light on the role of the FGFR pathway in the injured spinal cord and discusses various therapies that use FGFR activating ligands to promote regeneration after SCI. We discuss studies that use peripheral nerve grafts or Schwann cell grafts in combination with FGF1 or FGF2 supplementation.
View Article and Find Full Text PDFBrain and spinal injury reduce mobility and often impair sensorimotor processing in the spinal cord leading to spasticity. Here, we establish that complete transection of corticospinal pathways in the pyramids impairs locomotion and leads to increased spasms and excessive mono- and polysynaptic low threshold spinal reflexes in rats. Treatment of affected forelimb muscles with an adeno-associated viral vector (AAV) encoding human Neurotrophin-3 at a clinically-feasible time-point after injury reduced spasticity.
View Article and Find Full Text PDFTesting of therapies for disease or injury often involves the analysis of longitudinal data from animals. Modern analytical methods have advantages over conventional methods (particularly when some data are missing), yet they are not used widely by preclinical researchers. Here we provide an easy-to-use protocol for the analysis of longitudinal data from animals, and we present a click-by-click guide for performing suitable analyses using the statistical package IBM SPSS Statistics software (SPSS).
View Article and Find Full Text PDFUnlabelled: Growth of intact axons of noninjured neurons, often termed collateral sprouting, contributes to both adaptive and pathological plasticity in the adult nervous system, but the intracellular factors controlling this growth are largely unknown. An automated functional assay of genes regulated in sensory neurons from the rat in vivo spared dermatome model of collateral sprouting identified the adaptor protein CD2-associated protein (CD2AP; human CMS) as a positive regulator of axon growth. In non-neuronal cells, CD2AP, like other adaptor proteins, functions to selectively control the spatial/temporal assembly of multiprotein complexes that transmit intracellular signals.
View Article and Find Full Text PDFSpinal cord injury (SCI) is a severe condition that affects many people and results in high health care costs. Therefore, it is essential to find new targets for treatment. The fibroblast growth factor receptor 1 (FGFR1) signalling pathway has a history of being explored for SCI treatment.
View Article and Find Full Text PDFStroke typically occurs in elderly people with a range of comorbidities including carotid (or other arterial) atherosclerosis, high blood pressure, obesity and diabetes. Accordingly, when evaluating therapies for stroke in animals, it is important to select a model with excellent face validity. Ischemic stroke accounts for 80% of all strokes, and the majority of these occur in the territory of the middle cerebral artery (MCA), often inducing infarcts that affect the sensorimotor cortex, causing persistent plegia or paresis on the contralateral side of the body.
View Article and Find Full Text PDF