Publications by authors named "Lawrence J Watson"

Background: Integrating unmanned aerial vehicles (UAV) as a new method of pesticide application into existing commercial crop protection systems requires extensive research and comparison to conventional, proven application technology. Pest control expressed as efficacy against target pests, and spray quality expressed as coverage and chemical residue are three key criteria. We investigated and compared these quantitative parameters between a multi-rotor UAV and conventional piloted airplanes in two commercial alfalfa production systems.

View Article and Find Full Text PDF

Background: Unmanned Aerial Vehicles (UAVs), a new method of application to deliver pesticides, is rapidly being adopted for commercial use in crop protection in East Asia with increasing worldwide interest. Pest control in mature almond orchards with dense foliar canopies presents greater coverage challenges than field crops and smaller orchard or vineyard crops. We investigated the use of an electric hexacopter to provide acceptable spray deposition and canopy penetration to be considered credible for use in an almond pest control program.

View Article and Find Full Text PDF

Background: Given the physical properties of insecticides, there is often some movement of these compounds within crop plants following foliar application. In this context, movement of two formulations of cyantraniliprole, an anthranilic diamide, was characterized for translocation to new growth, distribution within a leaf and penetration through the leaf cuticle.

Results: Upward movement of cyantraniliprole to new plant growth via the xylem was confirmed using (14) C-radiolabeled cyantraniliprole and from Helicoverpa zea mortality on tomato leaves that had not been directly treated.

View Article and Find Full Text PDF

Measured uptake of cyantraniliprole (3-bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano-2-methyl-6-[(methylamino)carbonyl]phenyl]-1H-pyrazole-5-carboxamide) into tomatoes following hydroponic exposure allowed calibration of a novel soil uptake model. The total mass of plant parts in treated plants was derived from the weights of successively harvested control plants (no cyantraniliprole provided) over 18 days following the first sampling of ripe tomatoes. Transpired water measured during plant growth was coupled with the calculated increase in plant mass to determine a transpiration coefficient constant (L/kg plant fresh weight) for use in the model.

View Article and Find Full Text PDF