Publications by authors named "Lawrence Flowers"

Suppressor of cytokine signaling (SOCS)-1 protein modulates signaling by IFN-gamma by binding to the autophosphorylation site of JAK2 and by targeting bound JAK2 to the proteosome for degradation. We have developed a small tyrosine kinase inhibitor peptide (Tkip) that is a SOCS-1 mimetic. Tkip is compared in this study with the kinase inhibitory region (KIR) of SOCS-1 for JAK2 recognition, inhibition of kinase activity, and regulation of IFN-gamma-induced biological activity.

View Article and Find Full Text PDF

We have demonstrated previously that the C-terminal gamma interferon (IFN-gamma) mimetic peptide consisting of residues 95 to 133 [IFN-gamma(95-133)], which contains the crucial IFN-gamma nuclear localization sequence (NLS), has antiviral activity in tissue culture. Here we evaluate the efficacy of this peptide and its derivatives first in vitro and then in an animal model of lethal viral infection with the encephalomyocarditis (EMC) virus. Deletion of the NLS region from the IFN-gamma mimetic peptide IFN-gamma(95-133) resulted in loss of antiviral activity.

View Article and Find Full Text PDF

Engagement of the T cell receptor for antigen (TCR) induces formation of signaling complexes mediated through the transmembrane adaptor protein, the linker for activation of T cells (LAT). LAT plays an important role in T cell development, activation, and homeostasis. A knock-in mutation at Tyr136, which is the phospholipase C (PLC)-gamma1-binding site in LAT, leads to a severe autoimmune disease in mice.

View Article and Find Full Text PDF

We have previously characterized a novel tyrosine kinase inhibitor peptide (Tkip) that is a mimetic of suppressor of cytokine signaling 1 (SOCS-1) and inhibits JAK2 phosphorylation of the transcription factor STAT1alpha. We show in this study that Tkip protects mice against experimental allergic encephalomyelitis (EAE), an animal model for multiple sclerosis. Mice are immunized with myelin basic protein (MBP) for induction of disease.

View Article and Find Full Text PDF

Prostate cancer is the second highest cause of cancer-related deaths of men in the US. Signal transducers and activators of transcription (STATs) proteins are a small family of latent cytoplasmic transcription factors that act downstream of Janus kinase (JAK) activation and mediate intracellular signaling from a wide variety of cytokines, growth factors, and hormones. Aberrant activation of STAT3 has been implicated in the progression of many human carcinomas, including prostate cancer.

View Article and Find Full Text PDF

Positive and negative regulation of cytokines such as IFN-gamma are key to normal homeostatic function. Negative regulation of IFN-gamma in cells occurs via proteins called suppressors of cytokine signaling (SOCS)1 and -3. SOCS-1 inhibits IFN-gamma function by binding to the autophosphorylation site of the tyrosine kinase Janus kinase (JAK)2.

View Article and Find Full Text PDF

The C-terminus of interferon-gamma (IFNgamma) contains a nuclear localization sequence (NLS) required for the activation and nuclear translocation of the transcription factor STAT1alpha and induction of IFNgamma-activated genes. On the basis of this and other studies, we developed a peptide mimetic of IFNgamma that possesses the IFNgamma functions of antiviral activity and upregulation of MHC class II molecules. The mimetic also shares with IFNgamma the ability to induce the activation and nuclear translocation of STAT1alpha and the IFNgamma receptor (IFNGR)-1 subunit.

View Article and Find Full Text PDF