Across the globe, millions of people are affected by muco-obstructive pulmonary diseases like cystic fibrosis, asthma, and chronic obstructive pulmonary disease. In MOPDs, the airway mucus becomes hyperconcentrated, increasing viscoelasticity and impairing mucus clearance. Research focused on treatment of MOPDs requires relevant sources of airway mucus both as a control sample type and as a basis for manipulation to study the effects of additional hyperconcentration, inflammatory milieu, and biofilm growth on the biochemical and biophysical properties of mucus.
View Article and Find Full Text PDFis the main contributor to the morbidity and mortality of cystic fibrosis (CF) patients. Chronic respiratory infections are rarely eradicated due to protection from CF mucus and the biofilm matrix. The composition of the biofilm matrix determines its viscoelastic properties and affects antibiotic efficacy.
View Article and Find Full Text PDFLoss of long-chain acyl-CoA synthetase isoform-1 (ACSL1) in mouse skeletal muscle () severely reduces acyl-CoA synthetase activity and fatty acid oxidation. However, the effects of decreased fatty acid oxidation on skeletal muscle function, histology, use of alternative fuels, and mitochondrial function and morphology are unclear. We observed that mice have impaired voluntary running capacity and muscle grip strength and that their gastrocnemius muscle contains myocytes with central nuclei, indicating muscle regeneration.
View Article and Find Full Text PDF